Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
6 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
7 |
|
8 |
print("Carregando TinyLlama 1.1B...")
|
9 |
-
print("Este modelo é muito mais eficiente para o plano gratuito!")
|
10 |
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -20,23 +23,24 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
20 |
if tokenizer.pad_token is None:
|
21 |
tokenizer.pad_token = tokenizer.eos_token
|
22 |
|
23 |
-
print("Modelo carregado
|
24 |
|
25 |
-
def
|
|
|
26 |
try:
|
27 |
-
# Template
|
28 |
-
prompt = f"<|system|>\nVocê é um assistente útil
|
29 |
|
30 |
# Tokenizar
|
31 |
inputs = tokenizer(
|
32 |
prompt,
|
33 |
return_tensors="pt",
|
34 |
truncation=True,
|
35 |
-
max_length=
|
36 |
padding=False
|
37 |
)
|
38 |
|
39 |
-
# Gerar resposta
|
40 |
with torch.no_grad():
|
41 |
outputs = model.generate(
|
42 |
inputs.input_ids,
|
@@ -47,72 +51,63 @@ def generate_response(message, max_tokens=300, temperature=0.8):
|
|
47 |
top_p=0.9,
|
48 |
repetition_penalty=1.1,
|
49 |
pad_token_id=tokenizer.eos_token_id,
|
50 |
-
eos_token_id=tokenizer.eos_token_id
|
51 |
-
early_stopping=True
|
52 |
)
|
53 |
|
54 |
-
#
|
55 |
new_tokens = outputs[0][len(inputs.input_ids[0]):]
|
56 |
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
57 |
|
58 |
# Limpar resposta
|
59 |
-
response = response.split("<|user|>")[0]
|
60 |
-
response = response.split("<|system|>")[0]
|
|
|
61 |
|
62 |
-
return response if response else "
|
63 |
|
64 |
except Exception as e:
|
65 |
-
return f"Erro
|
66 |
|
67 |
-
# Interface Gradio
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
),
|
83 |
-
gr.Slider(
|
84 |
-
minimum=0.1,
|
85 |
-
maximum=1.5,
|
86 |
-
value=0.8,
|
87 |
-
label="Temperature"
|
88 |
-
)
|
89 |
-
],
|
90 |
-
outputs=gr.Textbox(
|
91 |
-
label="🤖 Resposta",
|
92 |
-
lines=6
|
93 |
),
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
-
print("Iniciando
|
107 |
-
|
108 |
-
# Criar interface
|
109 |
-
iface = create_interface()
|
110 |
-
|
111 |
-
# Lançar com configurações estáveis
|
112 |
-
iface.launch(
|
113 |
server_name="0.0.0.0",
|
114 |
server_port=7860,
|
115 |
share=False,
|
116 |
-
show_error=False
|
117 |
-
quiet=True
|
118 |
)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
import os
|
5 |
|
6 |
+
# Reduzir verbosidade dos warnings
|
7 |
+
os.environ["TRANSFORMERS_VERBOSITY"] = "error"
|
8 |
+
|
9 |
+
# TinyLlama - modelo leve e eficiente
|
10 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
11 |
|
12 |
print("Carregando TinyLlama 1.1B...")
|
|
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
23 |
if tokenizer.pad_token is None:
|
24 |
tokenizer.pad_token = tokenizer.eos_token
|
25 |
|
26 |
+
print("✅ Modelo carregado! Interface iniciando...")
|
27 |
|
28 |
+
def chat_response(message, max_tokens, temperature):
|
29 |
+
"""Função principal de chat"""
|
30 |
try:
|
31 |
+
# Template do TinyLlama
|
32 |
+
prompt = f"<|system|>\nVocê é um assistente útil. Responda de forma clara e concisa.<|user|>\n{message}<|assistant|>\n"
|
33 |
|
34 |
# Tokenizar
|
35 |
inputs = tokenizer(
|
36 |
prompt,
|
37 |
return_tensors="pt",
|
38 |
truncation=True,
|
39 |
+
max_length=1200,
|
40 |
padding=False
|
41 |
)
|
42 |
|
43 |
+
# Gerar resposta (sem early_stopping para evitar warning)
|
44 |
with torch.no_grad():
|
45 |
outputs = model.generate(
|
46 |
inputs.input_ids,
|
|
|
51 |
top_p=0.9,
|
52 |
repetition_penalty=1.1,
|
53 |
pad_token_id=tokenizer.eos_token_id,
|
54 |
+
eos_token_id=tokenizer.eos_token_id
|
|
|
55 |
)
|
56 |
|
57 |
+
# Extrair resposta
|
58 |
new_tokens = outputs[0][len(inputs.input_ids[0]):]
|
59 |
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
60 |
|
61 |
# Limpar resposta
|
62 |
+
response = response.split("<|user|>")[0]
|
63 |
+
response = response.split("<|system|>")[0]
|
64 |
+
response = response.strip()
|
65 |
|
66 |
+
return response if response else "Não consegui gerar uma resposta. Tente reformular sua pergunta."
|
67 |
|
68 |
except Exception as e:
|
69 |
+
return f"Erro: {str(e)}"
|
70 |
|
71 |
+
# Interface Gradio simples e funcional
|
72 |
+
interface = gr.Interface(
|
73 |
+
fn=chat_response,
|
74 |
+
inputs=[
|
75 |
+
gr.Textbox(
|
76 |
+
label="💬 Sua pergunta",
|
77 |
+
placeholder="Digite sua pergunta aqui...",
|
78 |
+
lines=2
|
79 |
+
),
|
80 |
+
gr.Slider(
|
81 |
+
minimum=50,
|
82 |
+
maximum=400,
|
83 |
+
value=200,
|
84 |
+
step=10,
|
85 |
+
label="🔢 Tokens máximos"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
),
|
87 |
+
gr.Slider(
|
88 |
+
minimum=0.1,
|
89 |
+
maximum=1.2,
|
90 |
+
value=0.7,
|
91 |
+
step=0.1,
|
92 |
+
label="🌡️ Criatividade"
|
93 |
+
)
|
94 |
+
],
|
95 |
+
outputs=gr.Textbox(
|
96 |
+
label="🤖 Resposta do TinyLlama",
|
97 |
+
lines=5
|
98 |
+
),
|
99 |
+
title="🦙 TinyLlama Chat API",
|
100 |
+
description="Modelo de IA leve (2.2GB) otimizado para Hugging Face Spaces gratuito",
|
101 |
+
theme="default",
|
102 |
+
# Sem examples para evitar cache/erros
|
103 |
+
allow_flagging="never"
|
104 |
+
)
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
+
print("🚀 Iniciando servidor...")
|
108 |
+
interface.launch(
|
|
|
|
|
|
|
|
|
|
|
109 |
server_name="0.0.0.0",
|
110 |
server_port=7860,
|
111 |
share=False,
|
112 |
+
show_error=False
|
|
|
113 |
)
|