Spaces:
Sleeping
Sleeping
File size: 3,810 Bytes
97f6d3d ae3466a 97f6d3d 465b45f 97f6d3d ae3466a a11b754 97f6d3d a11b754 97f6d3d a11b754 97f6d3d ae3466a 97f6d3d a11b754 97f6d3d a11b754 97f6d3d a11b754 97f6d3d ae3466a 97f6d3d c51bf55 ae3466a 97f6d3d ae3466a 97f6d3d 672b2d6 ae3466a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import pandas as pd
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import io
print("Starting app...")
def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
try:
df = yf.download(ticker, start=start_date, end=end_date, progress=False)
if df.empty:
return None, "No data available for the specified ticker and date range.", None
except Exception as e:
return None, f"Error fetching data: {str(e)}", None
df = df[['Close']]
df['SMA_50'] = df['Close'].rolling(window=50).mean()
df['SMA_150'] = df['Close'].rolling(window=150).mean()
df['Signal'] = 0
df['Signal'][df['SMA_50'] > df['SMA_150']] = 1
df['Signal'][df['SMA_50'] < df['SMA_150']] = -1
df['Position'] = df['Signal'].diff()
cash = initial_budget
shares = 0
portfolio_values = []
for index, row in df.iterrows():
if pd.isna(row['Close']):
continue
if row['Position'] == 1 and cash > 0:
shares = cash / row['Close']
cash = 0
elif row['Position'] == -1 and shares > 0:
cash = shares * row['Close']
shares = 0
portfolio_value = cash + (shares * row['Close'])
portfolio_values.append(portfolio_value)
df = df.iloc[149:]
df['Portfolio Value'] = portfolio_values[149:]
plt.figure(figsize=(14, 8))
plt.plot(df['Portfolio Value'], label='Portfolio Value', color='purple')
plt.xlabel('Date')
plt.ylabel('Portfolio Value ($)')
plt.title(f'Portfolio Value Over Time with 50/150 SMA Crossover Strategy ({ticker})')
plt.legend()
plt.grid()
plt.tight_layout()
plot_file = io.BytesIO()
plt.savefig(plot_file, format='png')
plot_file.seek(0)
plt.close()
final_value = portfolio_values[-1]
profit_loss = final_value - initial_budget
percentage_return = (profit_loss / initial_budget) * 100
results = f"""
Ticker: {ticker}
Trading Period: {start_date} to {end_date}
Initial Investment: ${initial_budget}
Final Portfolio Value: ${final_value:.2f}
Total Profit/Loss: ${profit_loss:.2f}
Percentage Return: {percentage_return:.2f}%
"""
return plot_file, results, None
with gr.Blocks() as app:
gr.Markdown("# SMA Crossover Trading Strategy Simulator")
with gr.Tabs():
with gr.Tab("SMA Strategy Simulator"):
with gr.Row():
initial_budget = gr.Number(label="Initial Investment ($)", value=100, interactive=True)
start_date = gr.Text(label="Start Date (YYYY-MM-DD)", value="1993-01-01", interactive=True)
end_date = gr.Text(label="End Date (YYYY-MM-DD)", value="2023-12-31", interactive=True)
ticker = gr.Dropdown(
label="Stock Ticker Symbol",
choices=["SPY", "TSLA", "GOOGL", "AAPL", "MSFT"],
value="SPY",
)
run_button = gr.Button("Run Simulation")
with gr.Row():
portfolio_graph = gr.Image(label="Portfolio Value Over Time")
summary_text = gr.Textbox(label="Simulation Summary", lines=8)
with gr.Tab("Instructions"):
gr.Markdown("""
## How to Use:
1. Enter your initial investment amount.
2. Specify the trading period (start and end dates).
3. Select a stock ticker symbol (e.g., SPY, TSLA, GOOGL).
4. Click "Run Simulation" to visualize the portfolio value over time and view a summary of results.
""")
run_button.click(
sma_crossover_strategy,
inputs=[initial_budget, start_date, end_date, ticker],
outputs=[portfolio_graph, summary_text],
)
app.launch()
|