Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,46 +2,26 @@ import pandas as pd
|
|
2 |
import yfinance as yf
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
import io
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
-
def test_function(name):
|
9 |
-
return f"Hello, {name}!"
|
10 |
-
|
11 |
-
app = gr.Interface(fn=test_function, inputs="text", outputs="text")
|
12 |
-
app.launch()
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
print("App is starting...")
|
17 |
-
|
18 |
-
# Define the SMA Crossover Trading Strategy Function
|
19 |
def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
|
20 |
-
print(f"Fetching data for {ticker} from {start_date} to {end_date}...")
|
21 |
try:
|
22 |
-
# Fetch stock data
|
23 |
df = yf.download(ticker, start=start_date, end=end_date, progress=False)
|
24 |
if df.empty:
|
25 |
-
print("No data fetched. Returning error message.")
|
26 |
return None, "No data available for the specified ticker and date range.", None
|
27 |
except Exception as e:
|
28 |
-
print(f"Error fetching data: {str(e)}")
|
29 |
return None, f"Error fetching data: {str(e)}", None
|
30 |
|
31 |
-
# Calculate SMAs
|
32 |
-
print("Calculating SMAs...")
|
33 |
df = df[['Close']]
|
34 |
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
35 |
df['SMA_150'] = df['Close'].rolling(window=150).mean()
|
36 |
|
37 |
-
# Define signals
|
38 |
df['Signal'] = 0
|
39 |
df['Signal'][df['SMA_50'] > df['SMA_150']] = 1
|
40 |
df['Signal'][df['SMA_50'] < df['SMA_150']] = -1
|
41 |
df['Position'] = df['Signal'].diff()
|
42 |
|
43 |
-
# Initialize portfolio simulation
|
44 |
-
print("Simulating portfolio...")
|
45 |
cash = initial_budget
|
46 |
shares = 0
|
47 |
portfolio_values = []
|
@@ -49,23 +29,18 @@ def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
|
|
49 |
for index, row in df.iterrows():
|
50 |
if pd.isna(row['Close']):
|
51 |
continue
|
52 |
-
if row['Position'] == 1 and cash > 0:
|
53 |
shares = cash / row['Close']
|
54 |
cash = 0
|
55 |
-
elif row['Position'] == -1 and shares > 0:
|
56 |
cash = shares * row['Close']
|
57 |
shares = 0
|
58 |
-
|
59 |
-
# Calculate current portfolio value
|
60 |
portfolio_value = cash + (shares * row['Close'])
|
61 |
portfolio_values.append(portfolio_value)
|
62 |
|
63 |
-
# Handle missing data at the start
|
64 |
df = df.iloc[149:]
|
65 |
df['Portfolio Value'] = portfolio_values[149:]
|
66 |
|
67 |
-
# Generate plot
|
68 |
-
print("Generating plot...")
|
69 |
plt.figure(figsize=(14, 8))
|
70 |
plt.plot(df['Portfolio Value'], label='Portfolio Value', color='purple')
|
71 |
plt.xlabel('Date')
|
@@ -75,13 +50,11 @@ def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
|
|
75 |
plt.grid()
|
76 |
plt.tight_layout()
|
77 |
|
78 |
-
# Save plot to in-memory buffer
|
79 |
plot_file = io.BytesIO()
|
80 |
plt.savefig(plot_file, format='png')
|
81 |
plot_file.seek(0)
|
82 |
plt.close()
|
83 |
|
84 |
-
# Final portfolio summary
|
85 |
final_value = portfolio_values[-1]
|
86 |
profit_loss = final_value - initial_budget
|
87 |
percentage_return = (profit_loss / initial_budget) * 100
|
@@ -97,46 +70,28 @@ def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
|
|
97 |
|
98 |
return plot_file, results, None
|
99 |
|
100 |
-
# Create Gradio Interface
|
101 |
-
print("Setting up Gradio app...")
|
102 |
with gr.Blocks() as app:
|
103 |
gr.Markdown("# SMA Crossover Trading Strategy Simulator")
|
104 |
|
105 |
-
with gr.
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
with gr.Row():
|
119 |
-
portfolio_graph = gr.Image(label="Portfolio Value Over Time")
|
120 |
-
summary_text = gr.Textbox(label="Simulation Summary", lines=8)
|
121 |
-
|
122 |
-
# Instructions Tab
|
123 |
-
with gr.Tab("Instructions"):
|
124 |
-
gr.Markdown("""
|
125 |
-
## How to Use:
|
126 |
-
1. Enter your initial investment amount.
|
127 |
-
2. Specify the trading period (start and end dates).
|
128 |
-
3. Select a stock ticker symbol (e.g., SPY, TSLA, GOOGL).
|
129 |
-
4. Click "Run Simulation" to visualize the portfolio value over time and view a summary of results.
|
130 |
-
""")
|
131 |
-
|
132 |
-
# Connect simulation function to Gradio app
|
133 |
run_button.click(
|
134 |
sma_crossover_strategy,
|
135 |
inputs=[initial_budget, start_date, end_date, ticker],
|
136 |
outputs=[portfolio_graph, summary_text],
|
137 |
)
|
138 |
|
139 |
-
print("Launching Gradio app...")
|
140 |
app.launch()
|
141 |
|
142 |
|
|
|
2 |
import yfinance as yf
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
|
|
5 |
import gradio as gr
|
6 |
+
import io
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
|
|
|
9 |
try:
|
|
|
10 |
df = yf.download(ticker, start=start_date, end=end_date, progress=False)
|
11 |
if df.empty:
|
|
|
12 |
return None, "No data available for the specified ticker and date range.", None
|
13 |
except Exception as e:
|
|
|
14 |
return None, f"Error fetching data: {str(e)}", None
|
15 |
|
|
|
|
|
16 |
df = df[['Close']]
|
17 |
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
18 |
df['SMA_150'] = df['Close'].rolling(window=150).mean()
|
19 |
|
|
|
20 |
df['Signal'] = 0
|
21 |
df['Signal'][df['SMA_50'] > df['SMA_150']] = 1
|
22 |
df['Signal'][df['SMA_50'] < df['SMA_150']] = -1
|
23 |
df['Position'] = df['Signal'].diff()
|
24 |
|
|
|
|
|
25 |
cash = initial_budget
|
26 |
shares = 0
|
27 |
portfolio_values = []
|
|
|
29 |
for index, row in df.iterrows():
|
30 |
if pd.isna(row['Close']):
|
31 |
continue
|
32 |
+
if row['Position'] == 1 and cash > 0:
|
33 |
shares = cash / row['Close']
|
34 |
cash = 0
|
35 |
+
elif row['Position'] == -1 and shares > 0:
|
36 |
cash = shares * row['Close']
|
37 |
shares = 0
|
|
|
|
|
38 |
portfolio_value = cash + (shares * row['Close'])
|
39 |
portfolio_values.append(portfolio_value)
|
40 |
|
|
|
41 |
df = df.iloc[149:]
|
42 |
df['Portfolio Value'] = portfolio_values[149:]
|
43 |
|
|
|
|
|
44 |
plt.figure(figsize=(14, 8))
|
45 |
plt.plot(df['Portfolio Value'], label='Portfolio Value', color='purple')
|
46 |
plt.xlabel('Date')
|
|
|
50 |
plt.grid()
|
51 |
plt.tight_layout()
|
52 |
|
|
|
53 |
plot_file = io.BytesIO()
|
54 |
plt.savefig(plot_file, format='png')
|
55 |
plot_file.seek(0)
|
56 |
plt.close()
|
57 |
|
|
|
58 |
final_value = portfolio_values[-1]
|
59 |
profit_loss = final_value - initial_budget
|
60 |
percentage_return = (profit_loss / initial_budget) * 100
|
|
|
70 |
|
71 |
return plot_file, results, None
|
72 |
|
|
|
|
|
73 |
with gr.Blocks() as app:
|
74 |
gr.Markdown("# SMA Crossover Trading Strategy Simulator")
|
75 |
|
76 |
+
with gr.Row():
|
77 |
+
initial_budget = gr.Number(label="Initial Investment ($)", value=100)
|
78 |
+
start_date = gr.Text(label="Start Date (YYYY-MM-DD)", value="1993-01-01")
|
79 |
+
end_date = gr.Text(label="End Date (YYYY-MM-DD)", value="2023-12-31")
|
80 |
+
ticker = gr.Dropdown(
|
81 |
+
label="Stock Ticker Symbol",
|
82 |
+
choices=["SPY", "TSLA", "GOOGL", "AAPL", "MSFT"],
|
83 |
+
value="SPY",
|
84 |
+
)
|
85 |
+
run_button = gr.Button("Run Simulation")
|
86 |
+
portfolio_graph = gr.Image(label="Portfolio Value Over Time")
|
87 |
+
summary_text = gr.Textbox(label="Simulation Summary", lines=8)
|
88 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
run_button.click(
|
90 |
sma_crossover_strategy,
|
91 |
inputs=[initial_budget, start_date, end_date, ticker],
|
92 |
outputs=[portfolio_graph, summary_text],
|
93 |
)
|
94 |
|
|
|
95 |
app.launch()
|
96 |
|
97 |
|