# Import necessary libraries import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt import gradio as gr def sma_crossover_strategy(initial_budget, start_date, end_date, ticker): # Fetch the selected stock data using yfinance df = yf.download(ticker, start=start_date, end=end_date, progress=False) df = df[['Close']] # Use only the 'Close' price for SMA calculations # Calculate SMAs df['SMA_50'] = df['Close'].rolling(window=50).mean() df['SMA_150'] = df['Close'].rolling(window=150).mean() # Determine buy and sell signals df['Signal'] = 0 # Initialize a column for signals df['Signal'][df['SMA_50'] > df['SMA_150']] = 1 # Buy signal df['Signal'][df['SMA_50'] < df['SMA_150']] = -1 # Sell signal df['Position'] = df['Signal'].diff() # Capture points where the signal changes # Initialize investment simulation cash = initial_budget # Start with user-specified cash shares = 0 # No shares initially portfolio_values = [] # Store portfolio values # Iterate over the dataframe to simulate trading for index, row in df.iterrows(): # Buy signal if row['Position'] == 1 and cash > 0: shares = cash / row['Close'] cash = 0 # All money is invested in shares # Sell signal elif row['Position'] == -1 and shares > 0: cash = shares * row['Close'] shares = 0 # All shares are sold # Calculate current portfolio value portfolio_value = cash + (shares * row['Close']) portfolio_values.append(portfolio_value) # Add portfolio values to the dataframe for visualization df = df.iloc[149:] # Ignore rows with NaN values due to SMA calculations df['Portfolio Value'] = portfolio_values[149:] # Align portfolio values # Plot Portfolio Value over time plt.figure(figsize=(14, 8)) plt.plot(df['Portfolio Value'], label='Portfolio Value', color='purple') plt.xlabel('Date') plt.ylabel('Portfolio Value ($)') plt.title(f'Portfolio Value Over Time with 50/150 SMA Crossover Strategy ({ticker})') plt.legend() plt.grid() plt.tight_layout() # Save plot to a file for display plot_file = "portfolio_value_plot.png" plt.savefig(plot_file) plt.close() # Final results final_value = portfolio_values[-1] profit_loss = final_value - initial_budget percentage_return = (profit_loss / initial_budget) * 100 # Create summary text results = f""" Ticker: {ticker} Trading Period: {start_date} to {end_date} Initial Investment: ${initial_budget} Final Portfolio Value: ${final_value:.2f} Total Profit/Loss: ${profit_loss:.2f} Percentage Return: {percentage_return:.2f}% """ # Save results to a text file results_file = "simulation_results.txt" with open(results_file, "w") as f: f.write(results) return plot_file, results, results_file # Define Gradio interface components with gr.Blocks() as app: gr.Markdown("# SMA Crossover Trading Strategy Simulator") with gr.Tabs(): # Tab for SMA Strategy Simulation with gr.Tab("SMA Strategy Simulator"): with gr.Row(): initial_budget = gr.Number(label="Initial Investment ($)", value=100, interactive=True) start_date = gr.Text(label="Start Date (YYYY-MM-DD)", value="1993-01-01", interactive=True) end_date = gr.Text(label="End Date (YYYY-MM-DD)", value="2023-12-31", interactive=True) ticker = gr.Dropdown( label="Stock Ticker Symbol", choices=["SPY", "TSLA", "GOOGL", "AAPL", "MSFT"], value="SPY", ) run_button = gr.Button("Run Simulation") with gr.Row(): portfolio_graph = gr.Image(label="Portfolio Value Over Time") summary_text = gr.Textbox(label="Simulation Summary", lines=8) download_button = gr.File(label="Download Results (.txt)") # Tab for Instructions with gr.Tab("Instructions"): gr.Markdown(""" ## How to Use: 1. Enter your initial investment amount. 2. Specify the trading period (start and end dates). 3. Select a stock ticker symbol (e.g., SPY, TSLA, GOOGL). 4. Click "Run Simulation" to visualize the portfolio value over time and view a summary of results. 5. Download the results as a `.txt` file using the download button. ### Notes: - The 50-day and 150-day SMAs are used for buy and sell signals. - Ensure the trading period is valid for the selected ticker symbol. """) # Link simulation function to UI run_button.click( sma_crossover_strategy, inputs=[initial_budget, start_date, end_date, ticker], outputs=[portfolio_graph, summary_text, download_button], ) # Launch the app app.launch()