Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,12 +31,44 @@ if raw_image != 'Select image':
|
|
| 31 |
image = np.asarray(image)
|
| 32 |
|
| 33 |
with st.spinner('Loading Model...'):
|
| 34 |
-
|
| 35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
-
|
| 37 |
model = model.to(device)
|
| 38 |
model.eval()
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
st.success("Success")
|
| 42 |
|
|
|
|
| 31 |
image = np.asarray(image)
|
| 32 |
|
| 33 |
with st.spinner('Loading Model...'):
|
| 34 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large-ade")
|
| 35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
+
model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade",ignore_mismatched_sizes=True,num_labels=len(id2label), id2label=id2label, label2id=label2id,reshape_last_stage=True)
|
| 37 |
model = model.to(device)
|
| 38 |
model.eval()
|
| 39 |
+
|
| 40 |
+
with st.spinner('Preparing image...'):
|
| 41 |
+
# prepare the image for the model (aligned resize)
|
| 42 |
+
feature_extractor_inference = DPTFeatureExtractor(do_random_crop=False, do_pad=False)
|
| 43 |
+
pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
|
| 44 |
+
|
| 45 |
+
with st.spinner('Running inference...'):
|
| 46 |
+
outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
|
| 47 |
+
|
| 48 |
+
with st.spinner('Postprocessing...'):
|
| 49 |
+
logits = outputs.logits.cpu()
|
| 50 |
+
# First, rescale logits to original image size
|
| 51 |
+
upsampled_logits = nn.functional.interpolate(logits,
|
| 52 |
+
size=image.shape[:-1], # (height, width)
|
| 53 |
+
mode='bilinear',
|
| 54 |
+
align_corners=False)
|
| 55 |
+
# Second, apply argmax on the class dimension
|
| 56 |
+
seg = upsampled_logits.argmax(dim=1)[0]
|
| 57 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
|
| 58 |
+
all_labels = []
|
| 59 |
+
for label, color in enumerate(palette):
|
| 60 |
+
color_seg[seg == label, :] = color
|
| 61 |
+
if label in seg:
|
| 62 |
+
all_labels.append(id2label[label])
|
| 63 |
+
# Convert to BGR
|
| 64 |
+
color_seg = color_seg[..., ::-1]
|
| 65 |
+
# Show image + mask
|
| 66 |
+
img = np.array(image) * 0.5 + color_seg * 0.5
|
| 67 |
+
img = img.astype(np.uint8)
|
| 68 |
+
st.image(img, caption="Segmented Image")
|
| 69 |
+
st.header("Predicted Labels")
|
| 70 |
+
for idx, label in enumerate(all_labels):
|
| 71 |
+
st.subheader(f'{idx+1}) {label}')
|
| 72 |
|
| 73 |
st.success("Success")
|
| 74 |
|