Spaces:
Sleeping
Sleeping
Commit
·
87d7b67
1
Parent(s):
19cf5e6
add app.py and key
Browse files- ai_configs.py +84 -0
- app.py +219 -0
ai_configs.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Khanh Phan
|
3 |
+
Date: 2023-04-20
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
|
8 |
+
# MODEL PARAMETERS: https://platform.openai.com/docs/models/gpt-3-5
|
9 |
+
MODEL_NAME = "gpt-3.5-turbo" # Must select from MODEL_NAMES
|
10 |
+
MODEL_NAMES = ["gpt-4", "text-davinci-003", "gpt-3.5-turbo"]
|
11 |
+
EMBEDDING_MODEL = (
|
12 |
+
"text-embedding-ada-002" # OpenAI's best embeddings as of Apr 2023
|
13 |
+
)
|
14 |
+
|
15 |
+
# CHATBOT SERVICE
|
16 |
+
SERVICE = "freemind" # Must select from SERVICES
|
17 |
+
SERVICES = ["TokyoTechies", "Klever", "Test", "freemind"]
|
18 |
+
|
19 |
+
# DATA FORMATTING
|
20 |
+
DELIMITER_TOKYOTECHIES = "Sub Section:"
|
21 |
+
FILE_TYPE = ".txt"
|
22 |
+
FILE_ENCODING = "utf-8"
|
23 |
+
INTRODUCTION_MESSAGE = (
|
24 |
+
f"You are a chatbot of {SERVICE}. "
|
25 |
+
f"Use the below articles on the {SERVICE} to answer the subsequent question. " # noqa: E501
|
26 |
+
"If an answer cannot be found in the articles, write sorry that I cannot answer your request, please contact our support team for further assistance." # noqa: E501
|
27 |
+
r'If an answer is found, add embedding title in this format "[Title](URL)" to the end of an answer and ignore the same title.' # noqa: E501
|
28 |
+
)
|
29 |
+
SYSTEM_CONTENT = "You answer questions about {SERVICE}"
|
30 |
+
|
31 |
+
# CALCULATE EMBEDDING PARAMETERS
|
32 |
+
MAX_TOKENS = 1600 # maximum tokens for a section
|
33 |
+
BATCH_SIZE = 1000 # up to 2048 embedding inputs per request
|
34 |
+
TOKEN_BUDGET = 4096 - 500
|
35 |
+
|
36 |
+
# TRAINING PARAMETERS
|
37 |
+
CONTEXT_WINDOW = 4096 # Context window for the LLM.
|
38 |
+
NUM_OUTPUTS = 512 # Number of outputs for the LLM.
|
39 |
+
CHUNK_OVERLAP_RATIO = 0.1 # Chunk overlap as a ratio of chunk size
|
40 |
+
TEMPERATURE = 0.0 # A parameter that controls the “creativity” or
|
41 |
+
# randomness of the text generated. A higher temperature (e.g., 0.7)
|
42 |
+
# results in more diverse and creative output, while a lower temperature
|
43 |
+
# (e.g., 0.2) makes the output more deterministic and focused.
|
44 |
+
|
45 |
+
sys.path.append(os.path.abspath(os.path.join("..", "data")))
|
46 |
+
|
47 |
+
# PATH
|
48 |
+
if SERVICE in SERVICES:
|
49 |
+
if MODEL_NAME in MODEL_NAMES:
|
50 |
+
# Path to training files:
|
51 |
+
FOLDERPATH_DOCUMENTS = os.path.join(
|
52 |
+
"data",
|
53 |
+
SERVICE,
|
54 |
+
"training_files",
|
55 |
+
)
|
56 |
+
# Path to model
|
57 |
+
FOLDERPATH_INDEXES = os.path.join(
|
58 |
+
"models",
|
59 |
+
SERVICE,
|
60 |
+
MODEL_NAME,
|
61 |
+
)
|
62 |
+
FILEPATH_EMBEDDINGS = os.path.join(
|
63 |
+
"models",
|
64 |
+
SERVICE,
|
65 |
+
"embeddings",
|
66 |
+
f"{SERVICE}.csv",
|
67 |
+
)
|
68 |
+
# For evaluation
|
69 |
+
FOLDERPATH_QUESTION = os.path.join(
|
70 |
+
"data",
|
71 |
+
SERVICE,
|
72 |
+
"evaluation",
|
73 |
+
"questions",
|
74 |
+
)
|
75 |
+
FOLDERPATH_QA = os.path.join(
|
76 |
+
"data",
|
77 |
+
SERVICE,
|
78 |
+
"evaluation",
|
79 |
+
"QA_" + MODEL_NAME,
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError("MODEL_NAME must be in MODEL_NAMES")
|
83 |
+
else:
|
84 |
+
raise ValueError("SERVICE must be in SERVICES")
|
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast # for converting embeddings saved as strings back to arrays
|
2 |
+
import configparser
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import openai # for calling the OpenAI API
|
8 |
+
import pandas as pd # for storing text and embeddings data
|
9 |
+
import tiktoken # for counting tokens
|
10 |
+
from ai_configs import (
|
11 |
+
EMBEDDING_MODEL,
|
12 |
+
FILEPATH_EMBEDDINGS,
|
13 |
+
INTRODUCTION_MESSAGE,
|
14 |
+
MODEL_NAME,
|
15 |
+
SYSTEM_CONTENT,
|
16 |
+
TOKEN_BUDGET,
|
17 |
+
)
|
18 |
+
from scipy import spatial # for calculating vector similarities for search
|
19 |
+
|
20 |
+
env = configparser.ConfigParser()
|
21 |
+
env.read(".env")
|
22 |
+
OPENAI_API_KEY = env["OpenAI"]["OPENAI_KEY_TT"] # huggingface
|
23 |
+
openai.api_key = env["OpenAI"]["OPENAI_KEY_TT"] # localhost
|
24 |
+
|
25 |
+
print(open)
|
26 |
+
|
27 |
+
model_name = MODEL_NAME
|
28 |
+
# Read embbeding file
|
29 |
+
embedding_data = pd.read_csv(FILEPATH_EMBEDDINGS)
|
30 |
+
# Convert embeddings from CSV str type back to list type
|
31 |
+
embedding_data["embedding"] = embedding_data["embedding"].apply(
|
32 |
+
ast.literal_eval,
|
33 |
+
)
|
34 |
+
print("Finished loading embedding data!")
|
35 |
+
|
36 |
+
|
37 |
+
# search function
|
38 |
+
def strings_ranked_by_relatedness(
|
39 |
+
query: str,
|
40 |
+
df: pd.DataFrame,
|
41 |
+
relatedness_fn=lambda x, y: 1 - spatial.distance.cosine(x, y),
|
42 |
+
top_n: int = 3,
|
43 |
+
) -> tuple[list[str], list[float]]:
|
44 |
+
"""Returns a list of strings and relatednesses,
|
45 |
+
sorted from most related to least.
|
46 |
+
"""
|
47 |
+
query_embedding_response = openai.Embedding.create(
|
48 |
+
model=EMBEDDING_MODEL,
|
49 |
+
input=query,
|
50 |
+
)
|
51 |
+
query_embedding = query_embedding_response["data"][0]["embedding"]
|
52 |
+
strings_and_relatednesses = [
|
53 |
+
(row["text"], relatedness_fn(query_embedding, row["embedding"]))
|
54 |
+
for i, row in df.iterrows()
|
55 |
+
]
|
56 |
+
strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
|
57 |
+
strings, relatednesses = zip(*strings_and_relatednesses)
|
58 |
+
|
59 |
+
return strings[:top_n], relatednesses[:top_n]
|
60 |
+
|
61 |
+
|
62 |
+
def num_tokens(text: str, model: str = MODEL_NAME) -> int:
|
63 |
+
"""Return the number of tokens in a string."""
|
64 |
+
encoding = tiktoken.encoding_for_model(model)
|
65 |
+
return len(encoding.encode(text))
|
66 |
+
|
67 |
+
|
68 |
+
def query_message(
|
69 |
+
query: str,
|
70 |
+
df: pd.DataFrame,
|
71 |
+
model: str,
|
72 |
+
token_budget: int,
|
73 |
+
) -> str:
|
74 |
+
"""Return a message for GPT,
|
75 |
+
with relevant source texts pulled from a dataframe.
|
76 |
+
"""
|
77 |
+
strings, _ = strings_ranked_by_relatedness(query, df)
|
78 |
+
|
79 |
+
""" example:
|
80 |
+
#strings, relatednesses = strings_ranked_by_relatedness(
|
81 |
+
# "what solutions that TT provides?",
|
82 |
+
# df,
|
83 |
+
# top_n=5,
|
84 |
+
# )
|
85 |
+
#for string, relatedness in zip(strings, relatednesses):
|
86 |
+
# print(f"{relatedness=:.3f}\n{string}\n")
|
87 |
+
"""
|
88 |
+
|
89 |
+
question = f"\n\nQuestion: {query}"
|
90 |
+
message = INTRODUCTION_MESSAGE
|
91 |
+
for string in strings:
|
92 |
+
next_article = f"\nTT article section:\n--\n{string}\n--"
|
93 |
+
next_article = f"\nFreemind article section:\n--\n{string}\n--"
|
94 |
+
if (
|
95 |
+
num_tokens(message + next_article + question, model=model)
|
96 |
+
> token_budget
|
97 |
+
):
|
98 |
+
break
|
99 |
+
else:
|
100 |
+
message += next_article
|
101 |
+
return message + question
|
102 |
+
|
103 |
+
|
104 |
+
def get_response(
|
105 |
+
query: str,
|
106 |
+
df: pd.DataFrame,
|
107 |
+
model: str = MODEL_NAME,
|
108 |
+
token_budget: int = TOKEN_BUDGET,
|
109 |
+
print_message: bool = False,
|
110 |
+
) -> str:
|
111 |
+
"""Answers a query using GPT and a dataframe of
|
112 |
+
relevant texts and embeddings.
|
113 |
+
"""
|
114 |
+
message = query_message(query, df, model=model, token_budget=token_budget)
|
115 |
+
|
116 |
+
if print_message:
|
117 |
+
print(message)
|
118 |
+
messages = [
|
119 |
+
{"role": "system", "content": SYSTEM_CONTENT},
|
120 |
+
{"role": "user", "content": message},
|
121 |
+
]
|
122 |
+
|
123 |
+
response = openai.ChatCompletion.create(
|
124 |
+
model=model,
|
125 |
+
messages=messages,
|
126 |
+
temperature=0,
|
127 |
+
)
|
128 |
+
response_message = response["choices"][0]["message"]["content"]
|
129 |
+
print(f'Total used tokens: {response["usage"]["total_tokens"]}')
|
130 |
+
return response_message, message
|
131 |
+
|
132 |
+
|
133 |
+
# Code for getting chatbot's response ends here. Below code is for UI only.
|
134 |
+
def format_response(responses: dict):
|
135 |
+
"""
|
136 |
+
(Optional) Format one or multiple responses from version(s) of chatbot
|
137 |
+
|
138 |
+
Parameters:
|
139 |
+
responses (dict): chatbot response with the name of model
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
output (str): formatted reponse
|
143 |
+
"""
|
144 |
+
output = ""
|
145 |
+
for response in responses:
|
146 |
+
output += response + (responses[response]) + "\n\n"
|
147 |
+
return output
|
148 |
+
|
149 |
+
|
150 |
+
with gr.Blocks() as chatgpt:
|
151 |
+
chatbot = gr.Chatbot(label="Freemind Bot", height=500)
|
152 |
+
message = gr.Textbox(
|
153 |
+
label="Enter your chat here",
|
154 |
+
placeholder="Press enter to send a message",
|
155 |
+
show_copy_button=True,
|
156 |
+
)
|
157 |
+
radio = gr.Radio(
|
158 |
+
[
|
159 |
+
"Full model (most capable but slow & expensive)",
|
160 |
+
"Lite model (Capable but fast & cheap)",
|
161 |
+
],
|
162 |
+
label="Choose a chatbot model",
|
163 |
+
value="Lite model (Capable but fast & cheap)",
|
164 |
+
)
|
165 |
+
clear = gr.Button("Clear all chat")
|
166 |
+
|
167 |
+
def choice_model(choice):
|
168 |
+
if choice == "Full model (most capable but slow & expensive)":
|
169 |
+
return "gpt-4"
|
170 |
+
else:
|
171 |
+
return "gpt-3.5-turbo"
|
172 |
+
|
173 |
+
def get_user_message(user_message, history):
|
174 |
+
return "", history + [[user_message, None]]
|
175 |
+
|
176 |
+
def show_response(history, model):
|
177 |
+
message = history[-1][0]
|
178 |
+
model = choice_model(model)
|
179 |
+
print(f"model: {model}")
|
180 |
+
# Get the response from OpenAI
|
181 |
+
response, _ = get_response(
|
182 |
+
query=message,
|
183 |
+
df=embedding_data,
|
184 |
+
model=model,
|
185 |
+
)
|
186 |
+
|
187 |
+
# Correct URL
|
188 |
+
# I will remove this function after BE/FE fixing this bug
|
189 |
+
response = response.replace("help/document/", "wiki/1-")
|
190 |
+
response = response.replace(">>", ">")
|
191 |
+
print("Q: ", message, "\nA: ", response, "\n")
|
192 |
+
|
193 |
+
# Format the response
|
194 |
+
# responses = {
|
195 |
+
# f"[{MODEL_NAME}] → ": response,
|
196 |
+
# }
|
197 |
+
# response = format_response(responses)
|
198 |
+
|
199 |
+
history[-1][1] = ""
|
200 |
+
for character in response:
|
201 |
+
history[-1][1] += character
|
202 |
+
time.sleep(0.01)
|
203 |
+
yield history
|
204 |
+
|
205 |
+
message.submit(
|
206 |
+
get_user_message,
|
207 |
+
[message, chatbot],
|
208 |
+
[message, chatbot],
|
209 |
+
queue=False,
|
210 |
+
).then(
|
211 |
+
show_response,
|
212 |
+
[chatbot, radio],
|
213 |
+
chatbot,
|
214 |
+
)
|
215 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
216 |
+
|
217 |
+
|
218 |
+
chatgpt.queue()
|
219 |
+
chatgpt.launch(share=True) # share=True to share the chat publicly
|