File size: 5,810 Bytes
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import collections
import random
from typing import Iterator

import cv2
import numpy as np
import torchdata.datapipes as dp
from imwatermark import WatermarkEncoder
from PIL import (
    Image,
    ImageFile,
)
from torch.utils.data import DataLoader
from torchdata.datapipes.iter import (
    Concater,
    FileLister,
    FileOpener,
    SampleMultiplexer,
)
from torchvision.transforms import v2
from tqdm import tqdm

ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = 1000000000

encoder = WatermarkEncoder()
encoder.set_watermark("bytes", b"test")

DOMAIN_LABELS = {
    0: "laion",
    1: "StableDiffusion",
    2: "dalle2",
    3: "dalle3",
    4: "midjourney",
}

N_SAMPLES = {
    0: (115346, 14418, 14419),
    1: (22060, 2757, 2758),
    4: (21096, 2637, 2637),
    2: (13582, 1697, 1699),
    3: (12027, 1503, 1504),
}


@dp.functional_datapipe("collect_from_workers")
class WorkerResultCollector(dp.iter.IterDataPipe):
    def __init__(self, source: dp.iter.IterDataPipe):
        self.source = source

    def __iter__(self) -> Iterator:
        yield from self.source

    def is_replicable(self) -> bool:
        """Method to force data back to main process"""
        return False


def crop_bottom(image, cutoff=16):
    return image[:, :-cutoff, :]


def random_gaussian_blur(image, p=0.01):
    if random.random() < p:
        return v2.functional.gaussian_blur(image, kernel_size=5)
    return image


def random_invisible_watermark(image, p=0.2):
    image_np = np.array(image)
    image_np = np.transpose(image_np, (1, 2, 0))

    if image_np.ndim == 2:  # Grayscale image
        image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2BGR)
    elif image_np.shape[2] == 4:  # RGBA image
        image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2BGR)

    if image_np.shape[0] < 256 or image_np.shape[1] < 256:
        image_np = cv2.resize(
            image_np,
            (256, 256),
            interpolation=cv2.INTER_AREA,
        )

    if random.random() < p:
        return encoder.encode(image_np, method="dwtDct")

    return image_np


def build_transform(split: str):
    train_transform = v2.Compose(
        [
            v2.Lambda(crop_bottom),
            v2.RandomCrop((256, 256), pad_if_needed=True),
            v2.Lambda(random_gaussian_blur),
            v2.RandomGrayscale(p=0.05),
            v2.Lambda(random_invisible_watermark),
            v2.ToImage(),
        ],
    )

    eval_transform = v2.Compose(
        [
            v2.CenterCrop((256, 256)),
        ],
    )
    transform = train_transform if split == "train" else eval_transform

    return transform


def dp_to_tuple_train(input_dict):
    transform = build_transform("train")
    return (
        transform(input_dict[".jpg"]),
        input_dict[".label.cls"],
        input_dict[".domain_label.cls"],
    )


def dp_to_tuple_eval(input_dict):
    transform = build_transform("eval")
    return (
        transform(input_dict[".jpg"]),
        input_dict[".label.cls"],
        input_dict[".domain_label.cls"],
    )


def load_dataset(domains: list[int], split: str):
    laion_lister = FileLister("./data/laion400m_data", f"{split}*.tar")
    genai_lister = {
        d: FileLister(
            f"./data/genai-images/{DOMAIN_LABELS[d]}",
            f"{split}*.tar",
        )
        for d in domains
        if DOMAIN_LABELS[d] != "laion"
    }
    weight_genai = 1 / len(genai_lister)

    def open_lister(lister):
        opener = FileOpener(lister, mode="b")
        return opener.load_from_tar().routed_decode().webdataset()

    buffer_size1 = 100 if split == "train" else 10
    buffer_size2 = 100 if split == "train" else 10

    if split != "train":
        all_lister = [laion_lister] + list(genai_lister.values())
        dp = open_lister(Concater(*all_lister)).sharding_filter()
    else:
        laion_dp = (
            open_lister(laion_lister.shuffle())
            .cycle()
            .sharding_filter()
            .shuffle(buffer_size=buffer_size1)
        )
        genai_dp = {
            open_lister(genai_lister[d].shuffle())
            .cycle()
            .sharding_filter()
            .shuffle(
                buffer_size=buffer_size1,
            ): weight_genai
            for d in domains
            if DOMAIN_LABELS[d] != "laion"
        }
        dp = SampleMultiplexer({laion_dp: 1, **genai_dp}).shuffle(
            buffer_size=buffer_size2,
        )

    if split == "train":
        dp = dp.map(dp_to_tuple_train)
    else:
        dp = dp.map(dp_to_tuple_eval)

    return dp


def load_dataloader(
    domains: list[int],
    split: str,
    batch_size: int = 32,
    num_workers: int = 4,
):
    dp = load_dataset(domains, split)
    # if split == "train":
    #     dp = UnderSamplerIterDataPipe(dp, {0: 0.5, 1: 0.5}, seed=42)
    dp = dp.batch(batch_size).collate()
    dl = DataLoader(
        dp,
        batch_size=None,
        num_workers=num_workers,
        pin_memory=True,
    )

    return dl


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    args = parser.parse_args()

    # testing code
    dl = load_dataloader([0, 1], "train", num_workers=8)
    y_dist = collections.Counter()
    d_dist = collections.Counter()

    for i, (img, y, d) in tqdm(enumerate(dl)):
        if i % 100 == 0:
            print(y, d)
        if i == 400:
            break
        y_dist.update(y.numpy())
        d_dist.update(d.numpy())

    print("class label")
    for label in sorted(y_dist):
        frequency = y_dist[label] / sum(y_dist.values())
        print(f"• {label}: {frequency:.2%} ({y_dist[label]})")

    print("domain label")
    for label in sorted(d_dist):
        frequency = d_dist[label] / sum(d_dist.values())
        print(f"• {label}: {frequency:.2%} ({d_dist[label]})")