Spaces:
Running
Running
File size: 5,810 Bytes
22e1b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import argparse
import collections
import random
from typing import Iterator
import cv2
import numpy as np
import torchdata.datapipes as dp
from imwatermark import WatermarkEncoder
from PIL import (
Image,
ImageFile,
)
from torch.utils.data import DataLoader
from torchdata.datapipes.iter import (
Concater,
FileLister,
FileOpener,
SampleMultiplexer,
)
from torchvision.transforms import v2
from tqdm import tqdm
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = 1000000000
encoder = WatermarkEncoder()
encoder.set_watermark("bytes", b"test")
DOMAIN_LABELS = {
0: "laion",
1: "StableDiffusion",
2: "dalle2",
3: "dalle3",
4: "midjourney",
}
N_SAMPLES = {
0: (115346, 14418, 14419),
1: (22060, 2757, 2758),
4: (21096, 2637, 2637),
2: (13582, 1697, 1699),
3: (12027, 1503, 1504),
}
@dp.functional_datapipe("collect_from_workers")
class WorkerResultCollector(dp.iter.IterDataPipe):
def __init__(self, source: dp.iter.IterDataPipe):
self.source = source
def __iter__(self) -> Iterator:
yield from self.source
def is_replicable(self) -> bool:
"""Method to force data back to main process"""
return False
def crop_bottom(image, cutoff=16):
return image[:, :-cutoff, :]
def random_gaussian_blur(image, p=0.01):
if random.random() < p:
return v2.functional.gaussian_blur(image, kernel_size=5)
return image
def random_invisible_watermark(image, p=0.2):
image_np = np.array(image)
image_np = np.transpose(image_np, (1, 2, 0))
if image_np.ndim == 2: # Grayscale image
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2BGR)
elif image_np.shape[2] == 4: # RGBA image
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2BGR)
if image_np.shape[0] < 256 or image_np.shape[1] < 256:
image_np = cv2.resize(
image_np,
(256, 256),
interpolation=cv2.INTER_AREA,
)
if random.random() < p:
return encoder.encode(image_np, method="dwtDct")
return image_np
def build_transform(split: str):
train_transform = v2.Compose(
[
v2.Lambda(crop_bottom),
v2.RandomCrop((256, 256), pad_if_needed=True),
v2.Lambda(random_gaussian_blur),
v2.RandomGrayscale(p=0.05),
v2.Lambda(random_invisible_watermark),
v2.ToImage(),
],
)
eval_transform = v2.Compose(
[
v2.CenterCrop((256, 256)),
],
)
transform = train_transform if split == "train" else eval_transform
return transform
def dp_to_tuple_train(input_dict):
transform = build_transform("train")
return (
transform(input_dict[".jpg"]),
input_dict[".label.cls"],
input_dict[".domain_label.cls"],
)
def dp_to_tuple_eval(input_dict):
transform = build_transform("eval")
return (
transform(input_dict[".jpg"]),
input_dict[".label.cls"],
input_dict[".domain_label.cls"],
)
def load_dataset(domains: list[int], split: str):
laion_lister = FileLister("./data/laion400m_data", f"{split}*.tar")
genai_lister = {
d: FileLister(
f"./data/genai-images/{DOMAIN_LABELS[d]}",
f"{split}*.tar",
)
for d in domains
if DOMAIN_LABELS[d] != "laion"
}
weight_genai = 1 / len(genai_lister)
def open_lister(lister):
opener = FileOpener(lister, mode="b")
return opener.load_from_tar().routed_decode().webdataset()
buffer_size1 = 100 if split == "train" else 10
buffer_size2 = 100 if split == "train" else 10
if split != "train":
all_lister = [laion_lister] + list(genai_lister.values())
dp = open_lister(Concater(*all_lister)).sharding_filter()
else:
laion_dp = (
open_lister(laion_lister.shuffle())
.cycle()
.sharding_filter()
.shuffle(buffer_size=buffer_size1)
)
genai_dp = {
open_lister(genai_lister[d].shuffle())
.cycle()
.sharding_filter()
.shuffle(
buffer_size=buffer_size1,
): weight_genai
for d in domains
if DOMAIN_LABELS[d] != "laion"
}
dp = SampleMultiplexer({laion_dp: 1, **genai_dp}).shuffle(
buffer_size=buffer_size2,
)
if split == "train":
dp = dp.map(dp_to_tuple_train)
else:
dp = dp.map(dp_to_tuple_eval)
return dp
def load_dataloader(
domains: list[int],
split: str,
batch_size: int = 32,
num_workers: int = 4,
):
dp = load_dataset(domains, split)
# if split == "train":
# dp = UnderSamplerIterDataPipe(dp, {0: 0.5, 1: 0.5}, seed=42)
dp = dp.batch(batch_size).collate()
dl = DataLoader(
dp,
batch_size=None,
num_workers=num_workers,
pin_memory=True,
)
return dl
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args = parser.parse_args()
# testing code
dl = load_dataloader([0, 1], "train", num_workers=8)
y_dist = collections.Counter()
d_dist = collections.Counter()
for i, (img, y, d) in tqdm(enumerate(dl)):
if i % 100 == 0:
print(y, d)
if i == 400:
break
y_dist.update(y.numpy())
d_dist.update(d.numpy())
print("class label")
for label in sorted(y_dist):
frequency = y_dist[label] / sum(y_dist.values())
print(f"• {label}: {frequency:.2%} ({y_dist[label]})")
print("domain label")
for label in sorted(d_dist):
frequency = d_dist[label] / sum(d_dist.values())
print(f"• {label}: {frequency:.2%} ({d_dist[label]})")
|