File size: 7,241 Bytes
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import pandas as pd
import re
import csv
from collections import Counter
from difflib import Differ
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')


def remove_stop_words(word_list):
    """
    Removes stop words from a list of single words.

    Args:
        word_list: A list of single words.

    Returns:
        A new list containing only the words that are not stop words.
    """

    stop_words = set(stopwords.words('english'))  # Get English stop words
    
    # Define characters to remove
    chars_to_remove = r'[^a-zA-Z0-9]'  # Matches any character that is not a letter or digit

    cleaned_words = []
    for word in word_list:
        # Remove punctuation and special characters
        word = re.sub(chars_to_remove, '', word) 

        # Check for single digits and single letters
        if len(word) > 1 and not word.isdigit(): 
            # Check if the word is not a stop word
            if word.lower() not in stop_words:
                cleaned_words.append(word)

    return cleaned_words


def write_word_counts_to_csv(data):
    """Writes word counts to a CSV file from a dictionary.

    Args:
        data_dict: A dictionary containing the word count data.
        filename: The name of the output CSV file.
    """

    with open('data/results/[res]added_word_counts.csv', 'w', encoding='utf-8', newline='') as csvfile:
        fieldnames = ['Word', 'Count']
        writer = csv.writer(csvfile)
        writer.writerow(fieldnames)

        for word, count in data['added_word_counts']:
            writer.writerow([word, count])
            
    with open('data/results/[res]removed_word_counts.csv', 'w', encoding='utf-8', newline='') as csvfile:
        fieldnames = ['Word', 'Count']
        writer = csv.writer(csvfile)
        writer.writerow(fieldnames)

        for word, count in data['removed_word_counts']:
            writer.writerow([word, count])
            
    # with open('data/results/[res]unchanged_words.csv', 'w', encoding='utf-8', newline='') as csvfile:
    #     fieldnames = ['Count', 'Phrase']
    #     writer = csv.writer(csvfile)
    #     writer.writerow(fieldnames)  # Write the header
        # for phrase, count in data['unchanged_words']:
        #     writer.writerow([count, phrase])


def preprocess_text(text):
    """
    Preprocesses a string by removing punctuation, numbers, and whitespace.

    Args:
        text: The string to preprocess.

    Returns:
        The preprocessed string.
    """
    
    # Lower case
    text = text.lower()

    # Split text into words while keeping commas and dots within numbers
    delimiters = r"(?<!\d)[ \.,;!\?\|-]+(?!\d)"  # Negative lookahead and lookbehind for digits
    text = re.split(delimiters, text)
    return text


def compare_strings_from_csv(csv_file):
    """
    Compares strings in a CSV file and returns added, removed, and unchanged substrings.

    Args:
        csv_file: Path to the CSV file.

    Returns:
        A tuple containing three lists: (removed_substrings, added_substrings, unchanged_substrings)
        and word counts of added substrings
        Returns None if there is an error with file reading
    """

    try:
        df = pd.read_csv(csv_file)
    except FileNotFoundError:
        print(f"Error: File '{csv_file}' not found.")
        return None
    except pd.errors.ParserError:
        print(f"Error: Could not parse CSV file '{csv_file}'.")
        return None

    removed_words_total = []
    added_words_total = []
    unchanged_phrases_total = []

    for _, row in df.iterrows():
        human_text = row['human']
        gpt_text = row['ChatGPT']
        removed_words, added_words, unchanged_phrases = compare_strings(human_text, gpt_text)
        removed_words_total += removed_words 
        added_words_total += added_words
        unchanged_phrases_total.extend(unchanged_phrases)
    
    added_word_counts = Counter()
    for substring in added_words_total:
        added_word_counts.update([substring])
    sorted_added_words = sorted(added_word_counts.items(), key=lambda x: x[1], reverse=True)
        
    removed_word_counts = Counter()
    for substring in removed_words_total:
        removed_word_counts.update([substring])
    sorted_removed_words = sorted(removed_word_counts.items(), key=lambda x: x[1], reverse=True)
    
    #sort phrase by number of words
    unchanged_phrases_total.sort(key=lambda x: x[1], reverse=True)

    return {
        "unchanged_words": unchanged_phrases_total,
        "added_word_counts": sorted_added_words,
        "removed_word_counts": sorted_removed_words,
    }


def compare_strings(a, b, n_gram=3):
    """
    Compares two strings and returns lists of removed, added, and unchanged substrings.

    Args:
        a: The first string.
        b: The second string.

    Returns:
        A tuple containing three lists: (removed, added, unchanged).
        - removed: List of substrings removed from a.
        - added: List of substrings added to b.
        - unchanged: List of common substrings (at least 4 consecutive words).
    """
    removed_ngrams = []
    added_ngrams = []
    unchanged_phrases = []
    
    # Pre-process the string
    a_splited = preprocess_text(a)
    b_splited = preprocess_text(b)
    
    # Find differences between words in a and b and generate diff list
    diff = Differ().compare(a_splited, b_splited)
    diff_list = list(diff)

    # Find removed words/substrings
    if n_gram == 1:
        removed_ngrams = list(w[2:] for w in diff_list if w.startswith("-"))
        removed_ngrams = remove_stop_words(removed_ngrams)
    # removed_word_counts = Counter()
    # for substring in removed_ngrams:
    #     removed_word_counts.update(substring.split())
    for i in range(len(diff_list) - n_gram + 1):
        if all(w.startswith("-") for w in diff_list[i:i+n_gram]): 
            joint_words = " ".join(diff_list[i:i+n_gram]).replace("- ", "")
            removed_ngrams.append(joint_words)  
    
    # Find added words/substrings
    if n_gram == 1:
        added_ngrams = list(w[2:] for w in diff_list if w.startswith(("+")))
        added_ngrams = remove_stop_words(added_ngrams)
        
    for i in range(len(diff_list) - n_gram + 1):
        if all(w.startswith("+") for w in diff_list[i:i+n_gram]): 
            joint_words = " ".join(diff_list[i:i+n_gram]).replace("+ ", "")
            added_ngrams.append(joint_words) 

    #Find Unchanged substrings
    substring = ""
    count = 0
    for word in diff_list:
        if word.startswith(("+", "-")):
            if substring != "":
                if count >= 4:
                    unchanged_phrase = " ".join(substring.split())
                    unchanged_phrases.append((unchanged_phrase, count))
                substring = ""
                count = 0
            continue
        substring += " " + word
        count += 1
        
    return removed_ngrams, added_ngrams, unchanged_phrases


if __name__ == "__main__":
    res = compare_strings_from_csv("data/ChatGPT_Nous_Hermes_2_Yi_34B_openchat_3_5_1210_with_best_similarity.csv")
    write_word_counts_to_csv(res)
    
    #remove_stop_words(["the", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"])