File size: 8,572 Bytes
22e1b62
 
 
 
badcb49
38fd181
 
 
 
 
22e1b62
1ce1659
da7dbd0
 
1ce1659
38fd181
22e1b62
 
 
 
 
 
38fd181
 
 
22e1b62
 
38fd181
 
 
22e1b62
 
38fd181
22e1b62
 
 
38fd181
 
 
22e1b62
 
 
 
 
 
38fd181
 
 
 
 
d952fbe
da7dbd0
d952fbe
 
 
da7dbd0
22e1b62
 
badcb49
38fd181
22e1b62
38fd181
22e1b62
38fd181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e1b62
38fd181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e1b62
38fd181
 
 
 
 
22e1b62
badcb49
504f37b
38fd181
 
 
 
504f37b
 
38fd181
 
 
 
504f37b
 
38fd181
 
 
 
504f37b
 
38fd181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
504f37b
 
 
 
 
 
 
 
 
 
 
22e1b62
 
 
38fd181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
1ce1659
38fd181
 
d952fbe
38fd181
 
 
 
b489aea
38fd181
 
 
 
b489aea
38fd181
 
 
 
b489aea
38fd181
 
 
 
b489aea
38fd181
 
 
 
504f37b
d952fbe
 
 
 
38fd181
504f37b
 
 
38fd181
a6b0abd
 
 
504f37b
38fd181
da7dbd0
 
38fd181
 
 
504f37b
da7dbd0
d952fbe
da7dbd0
 
d952fbe
b489aea
 
504f37b
da7dbd0
 
 
38fd181
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import requests
from PIL import Image

from src.application.content_detection import NewsVerification
from src.application.content_generation import (
    generate_fake_image,
    generate_fake_text,
    replace_text,
)
from src.application.url_reader import URLReader

AZURE_TEXT_MODEL = ["gpt-4o-mini", "gpt-4o"]
AZURE_IMAGE_MODEL = ["dall-e-3", "Stable Diffusion (not supported)"]


def load_url(url):
    """
    Load content from the given URL.
    """
    content = URLReader(url)
    image = None
    header = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36",  # noqa: E501
    }
    try:
        response = requests.get(
            url,
            headers=header,
            stream=True,
        )
        response.raise_for_status()  # Raise an exception for bad status codes

        image_response = requests.get(content.top_image, stream=True)
        try:
            image = Image.open(image_response.raw)
        except OSError as e:
            print(f"Error loading image from {content.top_image}: {e}")

    except (requests.exceptions.RequestException, FileNotFoundError) as e:
        print(f"Error fetching image: {e}")

    return content.title, content.text, image


def generate_analysis_report(
    news_title: str,
    news_content: str,
    news_image: Image,
):
    news_analysis = NewsVerification()
    news_analysis.load_news(news_title, news_content, news_image)
    news_analysis.generate_analysis_report()
    return news_analysis.analyze_details()


# Define the GUI
with gr.Blocks() as demo:
    gr.Markdown("# NEWS VERIFICATION")

    with gr.Row():
        # SETTINGS
        with gr.Column(scale=1):
            with gr.Accordion("1. Enter a URL"):
                url_input = gr.Textbox(
                    label="",
                    show_label=False,
                    value="",
                )
                load_button = gr.Button("Load URL")

            with gr.Accordion(
                "2. Select content-generation models",
                open=True,
                visible=False,
            ):
                with gr.Row():
                    text_generation_model = gr.Dropdown(
                        choices=AZURE_TEXT_MODEL,
                        label="Text-generation model",
                    )
                    image_generation_model = gr.Dropdown(
                        choices=AZURE_IMAGE_MODEL,
                        label="Image-generation model",
                    )
                    generate_text_button = gr.Button("Generate text")
                    generate_image_button = gr.Button("Generate image")

            with gr.Accordion(
                "3. Replace any terms",
                open=True,
                visible=False,
            ):
                replace_df = gr.Dataframe(
                    headers=["Find what:", "Replace with:"],
                    datatype=["str", "str"],
                    row_count=(1, "dynamic"),
                    col_count=(2, "fixed"),
                    interactive=True,
                )
                replace_button = gr.Button("Replace all")

            # GENERATED CONTENT
            with gr.Accordion("Input News"):
                news_title = gr.Textbox(label="Title", value="")
                news_image = gr.Image(label="Image", type="filepath")
                news_content = gr.Textbox(label="Content", value="", lines=13)

        # NEWS ANALYSIS REPORT
        ordinary_user_explanation = """
FOR ORDINARY USER<br>
- Green texts are the matched words in the input and source news.<br>
- Each highlighted pair (marked with a number) shows the key differences
between the input text and the source.
        """
        fact_checker_explanation = """
FOR FACT CHECKER<br>
- Green texts are the matched words in the input and source news.<br>
- Each highlighted pair (marked with a number) shows the key differences
between the input text and the source.
        """
        governor_explanation = """
FOR GOVERNOR<br>
- Green texts are the matched words in the input and source news.<br>
- Each highlighted pair (marked with a number) shows the key differences
between the input text and the source.
        """
        table = """
<h5>Comparison between input news and source news:</h5>
    <table border="1" style="width:100%; text-align:left;">
    <col style="width: 170px;">
    <col style="width: 170px;">
    <col style="width: 30px;">
    <col style="width: 75px;">
        <thead>
            <tr>
                <th>Input news</th>
                <th>Source (corresponding URL provided in Originality)</th>
                <th>Forensic</th>
                <th>Originality</th>
            </tr>
        </thead>
        <tbody>
            <tr>
                <th>TBD</th>
                <th>TBD</th>
                <th>TBD</th>
                <th>TBD</th>
            </tr>
        </tbody>
    </table>

    <style>"""
        with gr.Column(scale=2):
            with gr.Accordion("NEWS ANALYSIS"):
                verification_button = gr.Button("Verify news")
                with gr.Tab("Orinary User"):
                    gr.HTML(ordinary_user_explanation)
                    ordinary_user_result = gr.HTML(table)
                with gr.Tab("Fact Checker"):
                    gr.HTML(fact_checker_explanation)
                    fact_checker_result = gr.HTML(table)
                with gr.Tab("Governor"):
                    gr.HTML(governor_explanation)
                    governor_result = gr.HTML(table)

    # Connect events
    load_button.click(
        load_url,
        inputs=url_input,
        outputs=[news_title, news_content, news_image],
    )
    replace_button.click(
        replace_text,
        inputs=[news_title, news_content, replace_df],
        outputs=[news_title, news_content],
    )
    generate_text_button.click(
        generate_fake_text,
        inputs=[text_generation_model, news_title, news_content],
        outputs=[news_title, news_content],
    )
    generate_image_button.click(
        generate_fake_image,
        inputs=[image_generation_model, news_title],
        outputs=[news_image],
    )
    verification_button.click(
        generate_analysis_report,
        inputs=[news_title, news_content, news_image],
        outputs=[ordinary_user_result, fact_checker_result, governor_result],
    )

    # change Image
    # url_input.change(load_image, inputs=url_input, outputs=image_view)

    try:
        with open(
            "examples/example_text_real.txt",
            encoding="utf-8",
        ) as file:
            text_real_1 = file.read()
        with open(
            "examples/example_text_real_2.txt",
            encoding="utf-8",
        ) as file:
            text_real_2 = file.read()
        with open(
            "examples/example_text_LLM_topic.txt",
            encoding="utf-8",
        ) as file:
            text_llm_topic = file.read()
        with open(
            "examples/example_text_LLM_modification.txt",
            encoding="utf-8",
        ) as file:
            text_llm_modification = file.read()
        with open(
            "examples/example_text_LLM_entities.txt",
            encoding="utf-8",
        ) as file:
            text_llm_entities = file.read()
    except FileNotFoundError:
        print("File not found.")
    except Exception as e:
        print(f"An error occurred: {e}")

    title_1 = "Southampton news: Leeds target striker Cameron Archer."
    title_2 = "Southampton news: Leeds target striker Cameron Archer."
    title_4 = "Japan pledges support for Ukraine with 100-year pact."

    image_1 = "examples/example_image_real_1.jpg.webp"
    image_2 = "examples/example_image_real_2.jpg.webp"
    image_3 = "examples/example_image_real_3.jpg"
    image_4 = "examples/example_image_real_4.jpg.webp"

    gr.Examples(
        examples=[
            [title_1, image_1, text_real_1 + "\n\n" + text_real_2],
            [title_1, image_2, text_real_1 + "\n\n" + text_llm_modification],
            [title_1, image_3, text_real_1 + "\n\n" + text_llm_topic],
            [title_4, image_4, text_llm_entities],
        ],
        inputs=[news_title, news_image, news_content],
        label="Examples",
        example_labels=[
            "2 real news",
            "1 real news + 1 LLM modification-based news",
            "1 real news + 1 LLM topic-based news",
            "1 LLM changed-entities news",
        ],
    )

demo.launch(share=True)