news_verification / src /images /Diffusion /diffusion_data_loader.py
pmkhanh7890's picture
1st
22e1b62
raw
history blame
6.04 kB
import argparse
import collections
import glob
import os
import random
from typing import Iterator
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchdata as td
import torchdata.datapipes as dp
from imwatermark import WatermarkEncoder
from PIL import (
Image,
ImageFile,
)
from torch.utils.data import (
DataLoader,
RandomSampler,
)
from torchdata.dataloader2 import (
DataLoader2,
MultiProcessingReadingService,
)
from torchdata.datapipes.iter import (
Concater,
FileLister,
FileOpener,
SampleMultiplexer,
)
from torchvision.transforms import v2
from tqdm import tqdm
from utils_sampling import UnderSamplerIterDataPipe
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = 1000000000
encoder = WatermarkEncoder()
encoder.set_watermark("bytes", b"test")
DOMAIN_LABELS = {
0: "laion",
1: "StableDiffusion",
2: "dalle2",
3: "dalle3",
4: "midjourney",
}
N_SAMPLES = {
0: (115346, 14418, 14419),
1: (22060, 2757, 2758),
4: (21096, 2637, 2637),
2: (13582, 1697, 1699),
3: (12027, 1503, 1504),
}
@dp.functional_datapipe("collect_from_workers")
class WorkerResultCollector(dp.iter.IterDataPipe):
def __init__(self, source: dp.iter.IterDataPipe):
self.source = source
def __iter__(self) -> Iterator:
yield from self.source
def is_replicable(self) -> bool:
"""Method to force data back to main process"""
return False
def crop_bottom(image, cutoff=16):
return image[:, :-cutoff, :]
def random_gaussian_blur(image, p=0.01):
if random.random() < p:
return v2.functional.gaussian_blur(image, kernel_size=5)
return image
def random_invisible_watermark(image, p=0.2):
image_np = np.array(image)
image_np = np.transpose(image_np, (1, 2, 0))
if image_np.ndim == 2: # Grayscale image
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2BGR)
elif image_np.shape[2] == 4: # RGBA image
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2BGR)
# print(image_np.shape)
if image_np.shape[0] < 256 or image_np.shape[1] < 256:
image_np = cv2.resize(
image_np, (256, 256), interpolation=cv2.INTER_AREA
)
if random.random() < p:
return encoder.encode(image_np, method="dwtDct")
return image_np
def build_transform(split: str):
train_transform = v2.Compose(
[
v2.Lambda(crop_bottom),
v2.RandomCrop((256, 256), pad_if_needed=True),
v2.Lambda(random_gaussian_blur),
v2.RandomGrayscale(p=0.05),
v2.Lambda(random_invisible_watermark),
v2.ToImage(),
]
)
eval_transform = v2.Compose(
[
v2.CenterCrop((256, 256)),
]
)
transform = train_transform if split == "train" else eval_transform
return transform
def dp_to_tuple_train(input_dict):
transform = build_transform("train")
return (
transform(input_dict[".jpg"]),
input_dict[".label.cls"],
input_dict[".domain_label.cls"],
)
def dp_to_tuple_eval(input_dict):
transform = build_transform("eval")
return (
transform(input_dict[".jpg"]),
input_dict[".label.cls"],
input_dict[".domain_label.cls"],
)
def load_dataset(domains: list[int], split: str):
laion_lister = FileLister("./data/laion400m_data", f"{split}*.tar")
genai_lister = {
d: FileLister(
f"./data/genai-images/{DOMAIN_LABELS[d]}", f"{split}*.tar"
)
for d in domains
if DOMAIN_LABELS[d] != "laion"
}
weight_genai = 1 / len(genai_lister)
def open_lister(lister):
opener = FileOpener(lister, mode="b")
return opener.load_from_tar().routed_decode().webdataset()
buffer_size1 = 100 if split == "train" else 10
buffer_size2 = 100 if split == "train" else 10
if split != "train":
all_lister = [laion_lister] + list(genai_lister.values())
dp = open_lister(Concater(*all_lister)).sharding_filter()
else:
laion_dp = (
open_lister(laion_lister.shuffle())
.cycle()
.sharding_filter()
.shuffle(buffer_size=buffer_size1)
)
genai_dp = {
open_lister(genai_lister[d].shuffle())
.cycle()
.sharding_filter()
.shuffle(
buffer_size=buffer_size1,
): weight_genai
for d in domains
if DOMAIN_LABELS[d] != "laion"
}
dp = SampleMultiplexer({laion_dp: 1, **genai_dp}).shuffle(
buffer_size=buffer_size2
)
if split == "train":
dp = dp.map(dp_to_tuple_train)
else:
dp = dp.map(dp_to_tuple_eval)
return dp
def load_dataloader(
domains: list[int], split: str, batch_size: int = 32, num_workers: int = 4
):
dp = load_dataset(domains, split)
# if split == "train":
# dp = UnderSamplerIterDataPipe(dp, {0: 0.5, 1: 0.5}, seed=42)
dp = dp.batch(batch_size).collate()
dl = DataLoader(
dp, batch_size=None, num_workers=num_workers, pin_memory=True
)
return dl
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args = parser.parse_args()
# testing code
dl = load_dataloader([0, 1], "train", num_workers=8)
y_dist = collections.Counter()
d_dist = collections.Counter()
for i, (img, y, d) in tqdm(enumerate(dl)):
if i % 100 == 0:
print(y, d)
if i == 400:
break
y_dist.update(y.numpy())
d_dist.update(d.numpy())
print("class label")
for label in sorted(y_dist):
frequency = y_dist[label] / sum(y_dist.values())
print(f"• {label}: {frequency:.2%} ({y_dist[label]})")
print("domain label")
for label in sorted(d_dist):
frequency = d_dist[label] / sum(d_dist.values())
print(f"• {label}: {frequency:.2%} ({d_dist[label]})")