import gradio as gr
import requests
from PIL import Image
from src.application.content_detection import NewsVerification
from src.application.content_generation import (
generate_fake_image,
generate_fake_text,
replace_text,
)
from src.application.url_reader import URLReader
AZURE_TEXT_MODEL = ["gpt-4o-mini", "gpt-4o"]
AZURE_IMAGE_MODEL = ["dall-e-3", "Stable Diffusion (not supported)"]
def load_url(url):
"""
Load content from the given URL.
"""
content = URLReader(url)
image = None
header = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36", # noqa: E501
}
try:
response = requests.get(
url,
headers=header,
stream=True,
)
response.raise_for_status() # Raise an exception for bad status codes
image_response = requests.get(content.top_image, stream=True)
try:
image = Image.open(image_response.raw)
except OSError as e:
print(f"Error loading image from {content.top_image}: {e}")
except (requests.exceptions.RequestException, FileNotFoundError) as e:
print(f"Error fetching image: {e}")
return content.title, content.text, image
def generate_analysis_report(
news_title: str,
news_content: str,
news_image: Image,
):
news_analysis = NewsVerification()
news_analysis.load_news(news_title, news_content, news_image)
news_analysis.generate_analysis_report()
return news_analysis.analyze_details()
# Define the GUI
with gr.Blocks() as demo:
gr.Markdown("# NEWS VERIFICATION")
with gr.Row():
# SETTINGS
with gr.Column(scale=1):
with gr.Accordion("1. Enter a URL"):
url_input = gr.Textbox(
label="",
show_label=False,
value="",
)
load_button = gr.Button("Load URL")
with gr.Accordion(
"2. Select content-generation models",
open=True,
visible=False,
):
with gr.Row():
text_generation_model = gr.Dropdown(
choices=AZURE_TEXT_MODEL,
label="Text-generation model",
)
image_generation_model = gr.Dropdown(
choices=AZURE_IMAGE_MODEL,
label="Image-generation model",
)
generate_text_button = gr.Button("Generate text")
generate_image_button = gr.Button("Generate image")
with gr.Accordion(
"3. Replace any terms",
open=True,
visible=False,
):
replace_df = gr.Dataframe(
headers=["Find what:", "Replace with:"],
datatype=["str", "str"],
row_count=(1, "dynamic"),
col_count=(2, "fixed"),
interactive=True,
)
replace_button = gr.Button("Replace all")
# GENERATED CONTENT
with gr.Accordion("Input News"):
news_title = gr.Textbox(label="Title", value="")
news_image = gr.Image(label="Image", type="filepath")
news_content = gr.Textbox(label="Content", value="", lines=13)
# NEWS ANALYSIS REPORT
ordinary_user_explanation = """
FOR ORDINARY USER
- Green texts are the matched words in the input and source news.
- Each highlighted pair (marked with a number) shows the key differences
between the input text and the source.
"""
fact_checker_explanation = """
FOR FACT CHECKER
- Green texts are the matched words in the input and source news.
- Each highlighted pair (marked with a number) shows the key differences
between the input text and the source.
"""
governor_explanation = """
FOR GOVERNOR
- Green texts are the matched words in the input and source news.
- Each highlighted pair (marked with a number) shows the key differences
between the input text and the source.
"""
table = """
Input news | Source (corresponding URL provided in Originality) | Forensic | Originality |
---|---|---|---|
TBD | TBD | TBD | TBD |