Spaces:
pngwn
/
Runtime error

File size: 13,039 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.

import argparse
import glob
import logging
import os
import sys
from typing import Any, ClassVar, Dict, List
import torch

from detectron2.config import CfgNode, get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.engine.defaults import DefaultPredictor
from detectron2.structures.instances import Instances
from detectron2.utils.logger import setup_logger

from densepose import add_densepose_config
from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput
from densepose.utils.logger import verbosity_to_level
from densepose.vis.base import CompoundVisualizer
from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer
from densepose.vis.densepose_outputs_vertex import (
    DensePoseOutputsTextureVisualizer,
    DensePoseOutputsVertexVisualizer,
    get_texture_atlases,
)
from densepose.vis.densepose_results import (
    DensePoseResultsContourVisualizer,
    DensePoseResultsFineSegmentationVisualizer,
    DensePoseResultsUVisualizer,
    DensePoseResultsVVisualizer,
)
from densepose.vis.densepose_results_textures import (
    DensePoseResultsVisualizerWithTexture,
    get_texture_atlas,
)
from densepose.vis.extractor import (
    CompoundExtractor,
    DensePoseOutputsExtractor,
    DensePoseResultExtractor,
    create_extractor,
)

DOC = """Apply Net - a tool to print / visualize DensePose results
"""

LOGGER_NAME = "apply_net"
logger = logging.getLogger(LOGGER_NAME)

_ACTION_REGISTRY: Dict[str, "Action"] = {}


class Action:
    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        parser.add_argument(
            "-v",
            "--verbosity",
            action="count",
            help="Verbose mode. Multiple -v options increase the verbosity.",
        )


def register_action(cls: type):
    """
    Decorator for action classes to automate action registration
    """
    global _ACTION_REGISTRY
    _ACTION_REGISTRY[cls.COMMAND] = cls
    return cls


class InferenceAction(Action):
    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        super(InferenceAction, cls).add_arguments(parser)
        parser.add_argument("cfg", metavar="<config>", help="Config file")
        parser.add_argument("model", metavar="<model>", help="Model file")
        parser.add_argument(
            "--opts",
            help="Modify config options using the command-line 'KEY VALUE' pairs",
            default=[],
            nargs=argparse.REMAINDER,
        )

    @classmethod
    def execute(cls: type, args: argparse.Namespace, human_img):
        logger.info(f"Loading config from {args.cfg}")
        opts = []
        cfg = cls.setup_config(args.cfg, args.model, args, opts)
        logger.info(f"Loading model from {args.model}")
        predictor = DefaultPredictor(cfg)
        # logger.info(f"Loading data from {args.input}")
        # file_list = cls._get_input_file_list(args.input)
        # if len(file_list) == 0:
        #     logger.warning(f"No input images for {args.input}")
        #     return
        context = cls.create_context(args, cfg)
        # for file_name in file_list:
        #     img = read_image(file_name, format="BGR")  # predictor expects BGR image.
        with torch.no_grad():
            outputs = predictor(human_img)["instances"]
            out_pose = cls.execute_on_outputs(context, {"image": human_img}, outputs)
        cls.postexecute(context)
        return out_pose

    @classmethod
    def setup_config(
        cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
    ):
        cfg = get_cfg()
        add_densepose_config(cfg)
        cfg.merge_from_file(config_fpath)
        cfg.merge_from_list(args.opts)
        if opts:
            cfg.merge_from_list(opts)
        cfg.MODEL.WEIGHTS = model_fpath
        cfg.freeze()
        return cfg

    @classmethod
    def _get_input_file_list(cls: type, input_spec: str):
        if os.path.isdir(input_spec):
            file_list = [
                os.path.join(input_spec, fname)
                for fname in os.listdir(input_spec)
                if os.path.isfile(os.path.join(input_spec, fname))
            ]
        elif os.path.isfile(input_spec):
            file_list = [input_spec]
        else:
            file_list = glob.glob(input_spec)
        return file_list


@register_action
class DumpAction(InferenceAction):
    """
    Dump action that outputs results to a pickle file
    """

    COMMAND: ClassVar[str] = "dump"

    @classmethod
    def add_parser(cls: type, subparsers: argparse._SubParsersAction):
        parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.")
        cls.add_arguments(parser)
        parser.set_defaults(func=cls.execute)

    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        super(DumpAction, cls).add_arguments(parser)
        parser.add_argument(
            "--output",
            metavar="<dump_file>",
            default="results.pkl",
            help="File name to save dump to",
        )

    @classmethod
    def execute_on_outputs(
        cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
    ):
        image_fpath = entry["file_name"]
        logger.info(f"Processing {image_fpath}")
        result = {"file_name": image_fpath}
        if outputs.has("scores"):
            result["scores"] = outputs.get("scores").cpu()
        if outputs.has("pred_boxes"):
            result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu()
            if outputs.has("pred_densepose"):
                if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput):
                    extractor = DensePoseResultExtractor()
                elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput):
                    extractor = DensePoseOutputsExtractor()
                result["pred_densepose"] = extractor(outputs)[0]
        context["results"].append(result)

    @classmethod
    def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode):
        context = {"results": [], "out_fname": args.output}
        return context

    @classmethod
    def postexecute(cls: type, context: Dict[str, Any]):
        out_fname = context["out_fname"]
        out_dir = os.path.dirname(out_fname)
        if len(out_dir) > 0 and not os.path.exists(out_dir):
            os.makedirs(out_dir)
        with open(out_fname, "wb") as hFile:
            torch.save(context["results"], hFile)
            logger.info(f"Output saved to {out_fname}")


@register_action
class ShowAction(InferenceAction):
    """
    Show action that visualizes selected entries on an image
    """

    COMMAND: ClassVar[str] = "show"
    VISUALIZERS: ClassVar[Dict[str, object]] = {
        "dp_contour": DensePoseResultsContourVisualizer,
        "dp_segm": DensePoseResultsFineSegmentationVisualizer,
        "dp_u": DensePoseResultsUVisualizer,
        "dp_v": DensePoseResultsVVisualizer,
        "dp_iuv_texture": DensePoseResultsVisualizerWithTexture,
        "dp_cse_texture": DensePoseOutputsTextureVisualizer,
        "dp_vertex": DensePoseOutputsVertexVisualizer,
        "bbox": ScoredBoundingBoxVisualizer,
    }

    @classmethod
    def add_parser(cls: type, subparsers: argparse._SubParsersAction):
        parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
        cls.add_arguments(parser)
        parser.set_defaults(func=cls.execute)

    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        super(ShowAction, cls).add_arguments(parser)
        parser.add_argument(
            "visualizations",
            metavar="<visualizations>",
            help="Comma separated list of visualizations, possible values: "
            "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
        )
        parser.add_argument(
            "--min_score",
            metavar="<score>",
            default=0.8,
            type=float,
            help="Minimum detection score to visualize",
        )
        parser.add_argument(
            "--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold"
        )
        parser.add_argument(
            "--texture_atlas",
            metavar="<texture_atlas>",
            default=None,
            help="Texture atlas file (for IUV texture transfer)",
        )
        parser.add_argument(
            "--texture_atlases_map",
            metavar="<texture_atlases_map>",
            default=None,
            help="JSON string of a dict containing texture atlas files for each mesh",
        )
        parser.add_argument(
            "--output",
            metavar="<image_file>",
            default="outputres.png",
            help="File name to save output to",
        )

    @classmethod
    def setup_config(
        cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
    ):
        opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST")
        opts.append(str(args.min_score))
        if args.nms_thresh is not None:
            opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST")
            opts.append(str(args.nms_thresh))
        cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts)
        return cfg

    @classmethod
    def execute_on_outputs(
        cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
    ):
        import cv2
        import numpy as np
        visualizer = context["visualizer"]
        extractor = context["extractor"]
        # image_fpath = entry["file_name"]
        # logger.info(f"Processing {image_fpath}")
        image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY)
        image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
        data = extractor(outputs)
        image_vis = visualizer.visualize(image, data)

        return image_vis
        entry_idx = context["entry_idx"] + 1
        out_fname = './image-densepose/' + image_fpath.split('/')[-1]
        out_dir = './image-densepose'
        out_dir = os.path.dirname(out_fname)
        if len(out_dir) > 0 and not os.path.exists(out_dir):
            os.makedirs(out_dir)
        cv2.imwrite(out_fname, image_vis)
        logger.info(f"Output saved to {out_fname}")
        context["entry_idx"] += 1

    @classmethod
    def postexecute(cls: type, context: Dict[str, Any]):
        pass
# python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/DressCode/upper_body/images dp_segm -v --opts MODEL.DEVICE cpu

    @classmethod
    def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
        base, ext = os.path.splitext(fname_base)
        return base + ".{0:04d}".format(entry_idx) + ext

    @classmethod
    def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]:
        vis_specs = args.visualizations.split(",")
        visualizers = []
        extractors = []
        for vis_spec in vis_specs:
            texture_atlas = get_texture_atlas(args.texture_atlas)
            texture_atlases_dict = get_texture_atlases(args.texture_atlases_map)
            vis = cls.VISUALIZERS[vis_spec](
                cfg=cfg,
                texture_atlas=texture_atlas,
                texture_atlases_dict=texture_atlases_dict,
            )
            visualizers.append(vis)
            extractor = create_extractor(vis)
            extractors.append(extractor)
        visualizer = CompoundVisualizer(visualizers)
        extractor = CompoundExtractor(extractors)
        context = {
            "extractor": extractor,
            "visualizer": visualizer,
            "out_fname": args.output,
            "entry_idx": 0,
        }
        return context


def create_argument_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser(
        description=DOC,
        formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
    )
    parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
    subparsers = parser.add_subparsers(title="Actions")
    for _, action in _ACTION_REGISTRY.items():
        action.add_parser(subparsers)
    return parser


def main():
    parser = create_argument_parser()
    args = parser.parse_args()
    verbosity = getattr(args, "verbosity", None)
    global logger
    logger = setup_logger(name=LOGGER_NAME)
    logger.setLevel(verbosity_to_level(verbosity))
    args.func(args)


if __name__ == "__main__":
    main()


# python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/Dresscode/dresses/humanonly dp_segm -v --opts MODEL.DEVICE cuda