Spaces:
pngwn
/
Runtime error

File size: 23,973 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import datetime
import io
import json
import logging
import os
import shutil

import numpy as np
import pycocotools.mask as mask_util

from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
from fvcore.common.timer import Timer
from iopath.common.file_io import file_lock
from PIL import Image

from .. import DatasetCatalog, MetadataCatalog

"""
This file contains functions to parse COCO-format annotations into dicts in "Detectron2 format".
"""


logger = logging.getLogger(__name__)

__all__ = [
    "load_coco_json",
    "load_sem_seg",
    "convert_to_coco_json",
    "register_coco_instances",
]


def load_coco_json(
    json_file, image_root, dataset_name=None, extra_annotation_keys=None
):
    """
    Load a json file with COCO's instances annotation format.
    Currently supports instance detection, instance segmentation,
    and person keypoints annotations.

    Args:
        json_file (str): full path to the json file in COCO instances annotation format.
        image_root (str or path-like): the directory where the images in this json file exists.
        dataset_name (str or None): the name of the dataset (e.g., coco_2017_train).
            When provided, this function will also do the following:

            * Put "thing_classes" into the metadata associated with this dataset.
            * Map the category ids into a contiguous range (needed by standard dataset format),
              and add "thing_dataset_id_to_contiguous_id" to the metadata associated
              with this dataset.

            This option should usually be provided, unless users need to load
            the original json content and apply more processing manually.
        extra_annotation_keys (list[str]): list of per-annotation keys that should also be
            loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints",
            "category_id", "segmentation"). The values for these keys will be returned as-is.
            For example, the densepose annotations are loaded in this way.

    Returns:
        list[dict]: a list of dicts in Detectron2 standard dataset dicts format (See
        `Using Custom Datasets </tutorials/datasets.html>`_ ) when `dataset_name` is not None.
        If `dataset_name` is None, the returned `category_ids` may be
        incontiguous and may not conform to the Detectron2 standard format.

    Notes:
        1. This function does not read the image files.
           The results do not have the "image" field.
    """
    from pycocotools.coco import COCO

    timer = Timer()
    json_file = PathManager.get_local_path(json_file)
    with contextlib.redirect_stdout(io.StringIO()):
        coco_api = COCO(json_file)
    if timer.seconds() > 1:
        logger.info(
            "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())
        )

    id_map = None
    if dataset_name is not None:
        meta = MetadataCatalog.get(dataset_name)
        cat_ids = sorted(coco_api.getCatIds())
        cats = coco_api.loadCats(cat_ids)
        # The categories in a custom json file may not be sorted.
        thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
        meta.thing_classes = thing_classes

        # In COCO, certain category ids are artificially removed,
        # and by convention they are always ignored.
        # We deal with COCO's id issue and translate
        # the category ids to contiguous ids in [0, 80).

        # It works by looking at the "categories" field in the json, therefore
        # if users' own json also have incontiguous ids, we'll
        # apply this mapping as well but print a warning.
        if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
            if "coco" not in dataset_name:
                logger.warning(
                    """
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
"""
                )
        id_map = {v: i for i, v in enumerate(cat_ids)}
        meta.thing_dataset_id_to_contiguous_id = id_map

    # sort indices for reproducible results
    img_ids = sorted(coco_api.imgs.keys())
    # imgs is a list of dicts, each looks something like:
    # {'license': 4,
    #  'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
    #  'file_name': 'COCO_val2014_000000001268.jpg',
    #  'height': 427,
    #  'width': 640,
    #  'date_captured': '2013-11-17 05:57:24',
    #  'id': 1268}
    imgs = coco_api.loadImgs(img_ids)
    # anns is a list[list[dict]], where each dict is an annotation
    # record for an object. The inner list enumerates the objects in an image
    # and the outer list enumerates over images. Example of anns[0]:
    # [{'segmentation': [[192.81,
    #     247.09,
    #     ...
    #     219.03,
    #     249.06]],
    #   'area': 1035.749,
    #   'iscrowd': 0,
    #   'image_id': 1268,
    #   'bbox': [192.81, 224.8, 74.73, 33.43],
    #   'category_id': 16,
    #   'id': 42986},
    #  ...]
    anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
    total_num_valid_anns = sum([len(x) for x in anns])
    total_num_anns = len(coco_api.anns)
    if total_num_valid_anns < total_num_anns:
        logger.warning(
            f"{json_file} contains {total_num_anns} annotations, but only "
            f"{total_num_valid_anns} of them match to images in the file."
        )

    if "minival" not in json_file:
        # The popular valminusminival & minival annotations for COCO2014 contain this bug.
        # However the ratio of buggy annotations there is tiny and does not affect accuracy.
        # Therefore we explicitly white-list them.
        ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
        assert len(set(ann_ids)) == len(
            ann_ids
        ), "Annotation ids in '{}' are not unique!".format(json_file)

    imgs_anns = list(zip(imgs, anns))
    logger.info(
        "Loaded {} images in COCO format from {}".format(len(imgs_anns), json_file)
    )

    dataset_dicts = []

    ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"] + (
        extra_annotation_keys or []
    )

    num_instances_without_valid_segmentation = 0

    for (img_dict, anno_dict_list) in imgs_anns:
        record = {}
        record["file_name"] = os.path.join(image_root, img_dict["file_name"])
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        image_id = record["image_id"] = img_dict["id"]

        objs = []
        for anno in anno_dict_list:
            # Check that the image_id in this annotation is the same as
            # the image_id we're looking at.
            # This fails only when the data parsing logic or the annotation file is buggy.

            # The original COCO valminusminival2014 & minival2014 annotation files
            # actually contains bugs that, together with certain ways of using COCO API,
            # can trigger this assertion.
            assert anno["image_id"] == image_id

            assert (
                anno.get("ignore", 0) == 0
            ), '"ignore" in COCO json file is not supported.'

            obj = {key: anno[key] for key in ann_keys if key in anno}
            if "bbox" in obj and len(obj["bbox"]) == 0:
                raise ValueError(
                    f"One annotation of image {image_id} contains empty 'bbox' value! "
                    "This json does not have valid COCO format."
                )

            segm = anno.get("segmentation", None)
            if segm:  # either list[list[float]] or dict(RLE)
                if isinstance(segm, dict):
                    if isinstance(segm["counts"], list):
                        # convert to compressed RLE
                        segm = mask_util.frPyObjects(segm, *segm["size"])
                else:
                    # filter out invalid polygons (< 3 points)
                    segm = [
                        poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6
                    ]
                    if len(segm) == 0:
                        num_instances_without_valid_segmentation += 1
                        continue  # ignore this instance
                obj["segmentation"] = segm

            keypts = anno.get("keypoints", None)
            if keypts:  # list[int]
                for idx, v in enumerate(keypts):
                    if idx % 3 != 2:
                        # COCO's segmentation coordinates are floating points in [0, H or W],
                        # but keypoint coordinates are integers in [0, H-1 or W-1]
                        # Therefore we assume the coordinates are "pixel indices" and
                        # add 0.5 to convert to floating point coordinates.
                        keypts[idx] = v + 0.5
                obj["keypoints"] = keypts

            obj["bbox_mode"] = BoxMode.XYWH_ABS
            if id_map:
                annotation_category_id = obj["category_id"]
                try:
                    obj["category_id"] = id_map[annotation_category_id]
                except KeyError as e:
                    raise KeyError(
                        f"Encountered category_id={annotation_category_id} "
                        "but this id does not exist in 'categories' of the json file."
                    ) from e
            objs.append(obj)
        record["annotations"] = objs
        dataset_dicts.append(record)

    if num_instances_without_valid_segmentation > 0:
        logger.warning(
            "Filtered out {} instances without valid segmentation. ".format(
                num_instances_without_valid_segmentation
            )
            + "There might be issues in your dataset generation process.  Please "
            "check https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html carefully"
        )
    return dataset_dicts


def load_sem_seg(gt_root, image_root, gt_ext="png", image_ext="jpg"):
    """
    Load semantic segmentation datasets. All files under "gt_root" with "gt_ext" extension are
    treated as ground truth annotations and all files under "image_root" with "image_ext" extension
    as input images. Ground truth and input images are matched using file paths relative to
    "gt_root" and "image_root" respectively without taking into account file extensions.
    This works for COCO as well as some other datasets.

    Args:
        gt_root (str): full path to ground truth semantic segmentation files. Semantic segmentation
            annotations are stored as images with integer values in pixels that represent
            corresponding semantic labels.
        image_root (str): the directory where the input images are.
        gt_ext (str): file extension for ground truth annotations.
        image_ext (str): file extension for input images.

    Returns:
        list[dict]:
            a list of dicts in detectron2 standard format without instance-level
            annotation.

    Notes:
        1. This function does not read the image and ground truth files.
           The results do not have the "image" and "sem_seg" fields.
    """

    # We match input images with ground truth based on their relative filepaths (without file
    # extensions) starting from 'image_root' and 'gt_root' respectively.
    def file2id(folder_path, file_path):
        # extract relative path starting from `folder_path`
        image_id = os.path.normpath(os.path.relpath(file_path, start=folder_path))
        # remove file extension
        image_id = os.path.splitext(image_id)[0]
        return image_id

    input_files = sorted(
        (
            os.path.join(image_root, f)
            for f in PathManager.ls(image_root)
            if f.endswith(image_ext)
        ),
        key=lambda file_path: file2id(image_root, file_path),
    )
    gt_files = sorted(
        (
            os.path.join(gt_root, f)
            for f in PathManager.ls(gt_root)
            if f.endswith(gt_ext)
        ),
        key=lambda file_path: file2id(gt_root, file_path),
    )

    assert len(gt_files) > 0, "No annotations found in {}.".format(gt_root)

    # Use the intersection, so that val2017_100 annotations can run smoothly with val2017 images
    if len(input_files) != len(gt_files):
        logger.warn(
            "Directory {} and {} has {} and {} files, respectively.".format(
                image_root, gt_root, len(input_files), len(gt_files)
            )
        )
        input_basenames = [os.path.basename(f)[: -len(image_ext)] for f in input_files]
        gt_basenames = [os.path.basename(f)[: -len(gt_ext)] for f in gt_files]
        intersect = list(set(input_basenames) & set(gt_basenames))
        # sort, otherwise each worker may obtain a list[dict] in different order
        intersect = sorted(intersect)
        logger.warn("Will use their intersection of {} files.".format(len(intersect)))
        input_files = [os.path.join(image_root, f + image_ext) for f in intersect]
        gt_files = [os.path.join(gt_root, f + gt_ext) for f in intersect]

    logger.info(
        "Loaded {} images with semantic segmentation from {}".format(
            len(input_files), image_root
        )
    )

    dataset_dicts = []
    for (img_path, gt_path) in zip(input_files, gt_files):
        record = {}
        record["file_name"] = img_path
        record["sem_seg_file_name"] = gt_path
        dataset_dicts.append(record)

    return dataset_dicts


def convert_to_coco_dict(dataset_name):
    """
    Convert an instance detection/segmentation or keypoint detection dataset
    in detectron2's standard format into COCO json format.

    Generic dataset description can be found here:
    https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset

    COCO data format description can be found here:
    http://cocodataset.org/#format-data

    Args:
        dataset_name (str):
            name of the source dataset
            Must be registered in DatastCatalog and in detectron2's standard format.
            Must have corresponding metadata "thing_classes"
    Returns:
        coco_dict: serializable dict in COCO json format
    """

    dataset_dicts = DatasetCatalog.get(dataset_name)
    metadata = MetadataCatalog.get(dataset_name)

    # unmap the category mapping ids for COCO
    if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
        reverse_id_mapping = {
            v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items()
        }
        reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id]  # noqa
    else:
        reverse_id_mapper = lambda contiguous_id: contiguous_id  # noqa

    categories = [
        {"id": reverse_id_mapper(id), "name": name}
        for id, name in enumerate(metadata.thing_classes)
    ]

    logger.info("Converting dataset dicts into COCO format")
    coco_images = []
    coco_annotations = []

    for image_id, image_dict in enumerate(dataset_dicts):
        coco_image = {
            "id": image_dict.get("image_id", image_id),
            "width": int(image_dict["width"]),
            "height": int(image_dict["height"]),
            "file_name": str(image_dict["file_name"]),
        }
        coco_images.append(coco_image)

        anns_per_image = image_dict.get("annotations", [])
        for annotation in anns_per_image:
            # create a new dict with only COCO fields
            coco_annotation = {}

            # COCO requirement: XYWH box format for axis-align and XYWHA for rotated
            bbox = annotation["bbox"]
            if isinstance(bbox, np.ndarray):
                if bbox.ndim != 1:
                    raise ValueError(
                        f"bbox has to be 1-dimensional. Got shape={bbox.shape}."
                    )
                bbox = bbox.tolist()
            if len(bbox) not in [4, 5]:
                raise ValueError(f"bbox has to has length 4 or 5. Got {bbox}.")
            from_bbox_mode = annotation["bbox_mode"]
            to_bbox_mode = BoxMode.XYWH_ABS if len(bbox) == 4 else BoxMode.XYWHA_ABS
            bbox = BoxMode.convert(bbox, from_bbox_mode, to_bbox_mode)

            # COCO requirement: instance area
            if "segmentation" in annotation:
                # Computing areas for instances by counting the pixels
                segmentation = annotation["segmentation"]
                # TODO: check segmentation type: RLE, BinaryMask or Polygon
                if isinstance(segmentation, list):
                    polygons = PolygonMasks([segmentation])
                    area = polygons.area()[0].item()
                elif isinstance(segmentation, dict):  # RLE
                    area = mask_util.area(segmentation).item()
                else:
                    raise TypeError(f"Unknown segmentation type {type(segmentation)}!")
            else:
                # Computing areas using bounding boxes
                if to_bbox_mode == BoxMode.XYWH_ABS:
                    bbox_xy = BoxMode.convert(bbox, to_bbox_mode, BoxMode.XYXY_ABS)
                    area = Boxes([bbox_xy]).area()[0].item()
                else:
                    area = RotatedBoxes([bbox]).area()[0].item()

            if "keypoints" in annotation:
                keypoints = annotation["keypoints"]  # list[int]
                for idx, v in enumerate(keypoints):
                    if idx % 3 != 2:
                        # COCO's segmentation coordinates are floating points in [0, H or W],
                        # but keypoint coordinates are integers in [0, H-1 or W-1]
                        # For COCO format consistency we substract 0.5
                        # https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163
                        keypoints[idx] = v - 0.5
                if "num_keypoints" in annotation:
                    num_keypoints = annotation["num_keypoints"]
                else:
                    num_keypoints = sum(kp > 0 for kp in keypoints[2::3])

            # COCO requirement:
            #   linking annotations to images
            #   "id" field must start with 1
            coco_annotation["id"] = len(coco_annotations) + 1
            coco_annotation["image_id"] = coco_image["id"]
            coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
            coco_annotation["area"] = float(area)
            coco_annotation["iscrowd"] = int(annotation.get("iscrowd", 0))
            coco_annotation["category_id"] = int(
                reverse_id_mapper(annotation["category_id"])
            )

            # Add optional fields
            if "keypoints" in annotation:
                coco_annotation["keypoints"] = keypoints
                coco_annotation["num_keypoints"] = num_keypoints

            if "segmentation" in annotation:
                seg = coco_annotation["segmentation"] = annotation["segmentation"]
                if isinstance(seg, dict):  # RLE
                    counts = seg["counts"]
                    if not isinstance(counts, str):
                        # make it json-serializable
                        seg["counts"] = counts.decode("ascii")

            coco_annotations.append(coco_annotation)

    logger.info(
        "Conversion finished, "
        f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}"
    )

    info = {
        "date_created": str(datetime.datetime.now()),
        "description": "Automatically generated COCO json file for Detectron2.",
    }
    coco_dict = {
        "info": info,
        "images": coco_images,
        "categories": categories,
        "licenses": None,
    }
    if len(coco_annotations) > 0:
        coco_dict["annotations"] = coco_annotations
    return coco_dict


def convert_to_coco_json(dataset_name, output_file, allow_cached=True):
    """
    Converts dataset into COCO format and saves it to a json file.
    dataset_name must be registered in DatasetCatalog and in detectron2's standard format.

    Args:
        dataset_name:
            reference from the config file to the catalogs
            must be registered in DatasetCatalog and in detectron2's standard format
        output_file: path of json file that will be saved to
        allow_cached: if json file is already present then skip conversion
    """

    # TODO: The dataset or the conversion script *may* change,
    # a checksum would be useful for validating the cached data

    PathManager.mkdirs(os.path.dirname(output_file))
    with file_lock(output_file):
        if PathManager.exists(output_file) and allow_cached:
            logger.warning(
                f"Using previously cached COCO format annotations at '{output_file}'. "
                "You need to clear the cache file if your dataset has been modified."
            )
        else:
            logger.info(
                f"Converting annotations of dataset '{dataset_name}' to COCO format ...)"
            )
            coco_dict = convert_to_coco_dict(dataset_name)

            logger.info(f"Caching COCO format annotations at '{output_file}' ...")
            tmp_file = output_file + ".tmp"
            with PathManager.open(tmp_file, "w") as f:
                json.dump(coco_dict, f)
            shutil.move(tmp_file, output_file)


def register_coco_instances(name, metadata, json_file, image_root):
    """
    Register a dataset in COCO's json annotation format for
    instance detection, instance segmentation and keypoint detection.
    (i.e., Type 1 and 2 in http://cocodataset.org/#format-data.
    `instances*.json` and `person_keypoints*.json` in the dataset).

    This is an example of how to register a new dataset.
    You can do something similar to this function, to register new datasets.

    Args:
        name (str): the name that identifies a dataset, e.g. "coco_2014_train".
        metadata (dict): extra metadata associated with this dataset.  You can
            leave it as an empty dict.
        json_file (str): path to the json instance annotation file.
        image_root (str or path-like): directory which contains all the images.
    """
    assert isinstance(name, str), name
    assert isinstance(json_file, (str, os.PathLike)), json_file
    assert isinstance(image_root, (str, os.PathLike)), image_root
    # 1. register a function which returns dicts
    DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))

    # 2. Optionally, add metadata about this dataset,
    # since they might be useful in evaluation, visualization or logging
    MetadataCatalog.get(name).set(
        json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata
    )


def main() -> None:
    global logger
    """
    Test the COCO json dataset loader.

    Usage:
        python -m detectron2.data.datasets.coco \
            path/to/json path/to/image_root dataset_name

        "dataset_name" can be "coco_2014_minival_100", or other
        pre-registered ones
    """
    import sys

    import detectron2.data.datasets  # noqa  # add pre-defined metadata
    from detectron2.utils.logger import setup_logger
    from detectron2.utils.visualizer import Visualizer

    logger = setup_logger(name=__name__)
    assert sys.argv[3] in DatasetCatalog.list()
    meta = MetadataCatalog.get(sys.argv[3])

    dicts = load_coco_json(sys.argv[1], sys.argv[2], sys.argv[3])
    logger.info("Done loading {} samples.".format(len(dicts)))

    dirname = "coco-data-vis"
    os.makedirs(dirname, exist_ok=True)
    for d in dicts:
        img = np.array(Image.open(d["file_name"]))
        visualizer = Visualizer(img, metadata=meta)
        vis = visualizer.draw_dataset_dict(d)
        fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
        vis.save(fpath)


if __name__ == "__main__":
    main()  # pragma: no cover