Spaces:
pngwn
/
Runtime error

File size: 25,390 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data.detection_utils import get_fed_loss_cls_weights
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.modeling.box_regression import Box2BoxTransform, _dense_box_regression_loss
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import get_event_storage

__all__ = ["fast_rcnn_inference", "FastRCNNOutputLayers"]


logger = logging.getLogger(__name__)

"""
Shape shorthand in this module:

    N: number of images in the minibatch
    R: number of ROIs, combined over all images, in the minibatch
    Ri: number of ROIs in image i
    K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.

Naming convention:

    deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
    transform (see :class:`box_regression.Box2BoxTransform`).

    pred_class_logits: predicted class scores in [-inf, +inf]; use
        softmax(pred_class_logits) to estimate P(class).

    gt_classes: ground-truth classification labels in [0, K], where [0, K) represent
        foreground object classes and K represents the background class.

    pred_proposal_deltas: predicted box2box transform deltas for transforming proposals
        to detection box predictions.

    gt_proposal_deltas: ground-truth box2box transform deltas
"""


def fast_rcnn_inference(
    boxes: List[torch.Tensor],
    scores: List[torch.Tensor],
    image_shapes: List[Tuple[int, int]],
    score_thresh: float,
    nms_thresh: float,
    topk_per_image: int,
):
    """
    Call `fast_rcnn_inference_single_image` for all images.

    Args:
        boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic
            boxes for each image. Element i has shape (Ri, K * 4) if doing
            class-specific regression, or (Ri, 4) if doing class-agnostic
            regression, where Ri is the number of predicted objects for image i.
            This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`.
        scores (list[Tensor]): A list of Tensors of predicted class scores for each image.
            Element i has shape (Ri, K + 1), where Ri is the number of predicted objects
            for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`.
        image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch.
        score_thresh (float): Only return detections with a confidence score exceeding this
            threshold.
        nms_thresh (float):  The threshold to use for box non-maximum suppression. Value in [0, 1].
        topk_per_image (int): The number of top scoring detections to return. Set < 0 to return
            all detections.

    Returns:
        instances: (list[Instances]): A list of N instances, one for each image in the batch,
            that stores the topk most confidence detections.
        kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates
            the corresponding boxes/scores index in [0, Ri) from the input, for image i.
    """
    result_per_image = [
        fast_rcnn_inference_single_image(
            boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image
        )
        for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes)
    ]
    return [x[0] for x in result_per_image], [x[1] for x in result_per_image]


def _log_classification_stats(pred_logits, gt_classes, prefix="fast_rcnn"):
    """
    Log the classification metrics to EventStorage.

    Args:
        pred_logits: Rx(K+1) logits. The last column is for background class.
        gt_classes: R labels
    """
    num_instances = gt_classes.numel()
    if num_instances == 0:
        return
    pred_classes = pred_logits.argmax(dim=1)
    bg_class_ind = pred_logits.shape[1] - 1

    fg_inds = (gt_classes >= 0) & (gt_classes < bg_class_ind)
    num_fg = fg_inds.nonzero().numel()
    fg_gt_classes = gt_classes[fg_inds]
    fg_pred_classes = pred_classes[fg_inds]

    num_false_negative = (fg_pred_classes == bg_class_ind).nonzero().numel()
    num_accurate = (pred_classes == gt_classes).nonzero().numel()
    fg_num_accurate = (fg_pred_classes == fg_gt_classes).nonzero().numel()

    storage = get_event_storage()
    storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances)
    if num_fg > 0:
        storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg)
        storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg)


def fast_rcnn_inference_single_image(
    boxes,
    scores,
    image_shape: Tuple[int, int],
    score_thresh: float,
    nms_thresh: float,
    topk_per_image: int,
):
    """
    Single-image inference. Return bounding-box detection results by thresholding
    on scores and applying non-maximum suppression (NMS).

    Args:
        Same as `fast_rcnn_inference`, but with boxes, scores, and image shapes
        per image.

    Returns:
        Same as `fast_rcnn_inference`, but for only one image.
    """
    valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
    if not valid_mask.all():
        boxes = boxes[valid_mask]
        scores = scores[valid_mask]

    scores = scores[:, :-1]
    num_bbox_reg_classes = boxes.shape[1] // 4
    # Convert to Boxes to use the `clip` function ...
    boxes = Boxes(boxes.reshape(-1, 4))
    boxes.clip(image_shape)
    boxes = boxes.tensor.view(-1, num_bbox_reg_classes, 4)  # R x C x 4

    # 1. Filter results based on detection scores. It can make NMS more efficient
    #    by filtering out low-confidence detections.
    filter_mask = scores > score_thresh  # R x K
    # R' x 2. First column contains indices of the R predictions;
    # Second column contains indices of classes.
    filter_inds = filter_mask.nonzero()
    if num_bbox_reg_classes == 1:
        boxes = boxes[filter_inds[:, 0], 0]
    else:
        boxes = boxes[filter_mask]
    scores = scores[filter_mask]

    # 2. Apply NMS for each class independently.
    keep = batched_nms(boxes, scores, filter_inds[:, 1], nms_thresh)
    if topk_per_image >= 0:
        keep = keep[:topk_per_image]
    boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep]

    result = Instances(image_shape)
    result.pred_boxes = Boxes(boxes)
    result.scores = scores
    result.pred_classes = filter_inds[:, 1]
    return result, filter_inds[:, 0]


class FastRCNNOutputLayers(nn.Module):
    """
    Two linear layers for predicting Fast R-CNN outputs:

    1. proposal-to-detection box regression deltas
    2. classification scores
    """

    @configurable
    def __init__(
        self,
        input_shape: ShapeSpec,
        *,
        box2box_transform,
        num_classes: int,
        test_score_thresh: float = 0.0,
        test_nms_thresh: float = 0.5,
        test_topk_per_image: int = 100,
        cls_agnostic_bbox_reg: bool = False,
        smooth_l1_beta: float = 0.0,
        box_reg_loss_type: str = "smooth_l1",
        loss_weight: Union[float, Dict[str, float]] = 1.0,
        use_fed_loss: bool = False,
        use_sigmoid_ce: bool = False,
        get_fed_loss_cls_weights: Optional[Callable] = None,
        fed_loss_num_classes: int = 50,
    ):
        """
        NOTE: this interface is experimental.

        Args:
            input_shape (ShapeSpec): shape of the input feature to this module
            box2box_transform (Box2BoxTransform or Box2BoxTransformRotated):
            num_classes (int): number of foreground classes
            test_score_thresh (float): threshold to filter predictions results.
            test_nms_thresh (float): NMS threshold for prediction results.
            test_topk_per_image (int): number of top predictions to produce per image.
            cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
            smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if
                `box_reg_loss_type` is "smooth_l1"
            box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou",
                "diou", "ciou"
            loss_weight (float|dict): weights to use for losses. Can be single float for weighting
                all losses, or a dict of individual weightings. Valid dict keys are:
                    * "loss_cls": applied to classification loss
                    * "loss_box_reg": applied to box regression loss
            use_fed_loss (bool): whether to use federated loss which samples additional negative
                classes to calculate the loss
            use_sigmoid_ce (bool): whether to calculate the loss using weighted average of binary
                cross entropy with logits. This could be used together with federated loss
            get_fed_loss_cls_weights (Callable): a callable which takes dataset name and frequency
                weight power, and returns the probabilities to sample negative classes for
                federated loss. The implementation can be found in
                detectron2/data/detection_utils.py
            fed_loss_num_classes (int): number of federated classes to keep in total
        """
        super().__init__()
        if isinstance(input_shape, int):  # some backward compatibility
            input_shape = ShapeSpec(channels=input_shape)
        self.num_classes = num_classes
        input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1)
        # prediction layer for num_classes foreground classes and one background class (hence + 1)
        self.cls_score = nn.Linear(input_size, num_classes + 1)
        num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
        box_dim = len(box2box_transform.weights)
        self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)

        nn.init.normal_(self.cls_score.weight, std=0.01)
        nn.init.normal_(self.bbox_pred.weight, std=0.001)
        for l in [self.cls_score, self.bbox_pred]:
            nn.init.constant_(l.bias, 0)

        self.box2box_transform = box2box_transform
        self.smooth_l1_beta = smooth_l1_beta
        self.test_score_thresh = test_score_thresh
        self.test_nms_thresh = test_nms_thresh
        self.test_topk_per_image = test_topk_per_image
        self.box_reg_loss_type = box_reg_loss_type
        if isinstance(loss_weight, float):
            loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight}
        self.loss_weight = loss_weight
        self.use_fed_loss = use_fed_loss
        self.use_sigmoid_ce = use_sigmoid_ce
        self.fed_loss_num_classes = fed_loss_num_classes

        if self.use_fed_loss:
            assert self.use_sigmoid_ce, "Please use sigmoid cross entropy loss with federated loss"
            fed_loss_cls_weights = get_fed_loss_cls_weights()
            assert (
                len(fed_loss_cls_weights) == self.num_classes
            ), "Please check the provided fed_loss_cls_weights. Their size should match num_classes"
            self.register_buffer("fed_loss_cls_weights", fed_loss_cls_weights)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            "input_shape": input_shape,
            "box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS),
            # fmt: off
            "num_classes"               : cfg.MODEL.ROI_HEADS.NUM_CLASSES,
            "cls_agnostic_bbox_reg"     : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG,
            "smooth_l1_beta"            : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA,
            "test_score_thresh"         : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
            "test_nms_thresh"           : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
            "test_topk_per_image"       : cfg.TEST.DETECTIONS_PER_IMAGE,
            "box_reg_loss_type"         : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE,
            "loss_weight"               : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT},  # noqa
            "use_fed_loss"              : cfg.MODEL.ROI_BOX_HEAD.USE_FED_LOSS,
            "use_sigmoid_ce"            : cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE,
            "get_fed_loss_cls_weights"  : lambda: get_fed_loss_cls_weights(dataset_names=cfg.DATASETS.TRAIN, freq_weight_power=cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT_POWER),  # noqa
            "fed_loss_num_classes"      : cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_NUM_CLASSES,
            # fmt: on
        }

    def forward(self, x):
        """
        Args:
            x: per-region features of shape (N, ...) for N bounding boxes to predict.

        Returns:
            (Tensor, Tensor):
            First tensor: shape (N,K+1), scores for each of the N box. Each row contains the
            scores for K object categories and 1 background class.

            Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4),
            or (N,4) for class-agnostic regression.
        """
        if x.dim() > 2:
            x = torch.flatten(x, start_dim=1)
        scores = self.cls_score(x)
        proposal_deltas = self.bbox_pred(x)
        return scores, proposal_deltas

    def losses(self, predictions, proposals):
        """
        Args:
            predictions: return values of :meth:`forward()`.
            proposals (list[Instances]): proposals that match the features that were used
                to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``,
                ``gt_classes`` are expected.

        Returns:
            Dict[str, Tensor]: dict of losses
        """
        scores, proposal_deltas = predictions

        # parse classification outputs
        gt_classes = (
            cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
        )
        _log_classification_stats(scores, gt_classes)

        # parse box regression outputs
        if len(proposals):
            proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)  # Nx4
            assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
            # If "gt_boxes" does not exist, the proposals must be all negative and
            # should not be included in regression loss computation.
            # Here we just use proposal_boxes as an arbitrary placeholder because its
            # value won't be used in self.box_reg_loss().
            gt_boxes = cat(
                [(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
                dim=0,
            )
        else:
            proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)

        if self.use_sigmoid_ce:
            loss_cls = self.sigmoid_cross_entropy_loss(scores, gt_classes)
        else:
            loss_cls = cross_entropy(scores, gt_classes, reduction="mean")

        losses = {
            "loss_cls": loss_cls,
            "loss_box_reg": self.box_reg_loss(
                proposal_boxes, gt_boxes, proposal_deltas, gt_classes
            ),
        }
        return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}

    # Implementation from https://github.com/xingyizhou/CenterNet2/blob/master/projects/CenterNet2/centernet/modeling/roi_heads/fed_loss.py  # noqa
    # with slight modifications
    def get_fed_loss_classes(self, gt_classes, num_fed_loss_classes, num_classes, weight):
        """
        Args:
            gt_classes: a long tensor of shape R that contains the gt class label of each proposal.
            num_fed_loss_classes: minimum number of classes to keep when calculating federated loss.
            Will sample negative classes if number of unique gt_classes is smaller than this value.
            num_classes: number of foreground classes
            weight: probabilities used to sample negative classes

        Returns:
            Tensor:
                classes to keep when calculating the federated loss, including both unique gt
                classes and sampled negative classes.
        """
        unique_gt_classes = torch.unique(gt_classes)
        prob = unique_gt_classes.new_ones(num_classes + 1).float()
        prob[-1] = 0
        if len(unique_gt_classes) < num_fed_loss_classes:
            prob[:num_classes] = weight.float().clone()
            prob[unique_gt_classes] = 0
            sampled_negative_classes = torch.multinomial(
                prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False
            )
            fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes])
        else:
            fed_loss_classes = unique_gt_classes
        return fed_loss_classes

    # Implementation from https://github.com/xingyizhou/CenterNet2/blob/master/projects/CenterNet2/centernet/modeling/roi_heads/custom_fast_rcnn.py#L113  # noqa
    # with slight modifications
    def sigmoid_cross_entropy_loss(self, pred_class_logits, gt_classes):
        """
        Args:
            pred_class_logits: shape (N, K+1), scores for each of the N box. Each row contains the
            scores for K object categories and 1 background class
            gt_classes: a long tensor of shape R that contains the gt class label of each proposal.
        """
        if pred_class_logits.numel() == 0:
            return pred_class_logits.new_zeros([1])[0]

        N = pred_class_logits.shape[0]
        K = pred_class_logits.shape[1] - 1

        target = pred_class_logits.new_zeros(N, K + 1)
        target[range(len(gt_classes)), gt_classes] = 1
        target = target[:, :K]

        cls_loss = F.binary_cross_entropy_with_logits(
            pred_class_logits[:, :-1], target, reduction="none"
        )

        if self.use_fed_loss:
            fed_loss_classes = self.get_fed_loss_classes(
                gt_classes,
                num_fed_loss_classes=self.fed_loss_num_classes,
                num_classes=K,
                weight=self.fed_loss_cls_weights,
            )
            fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1)
            fed_loss_classes_mask[fed_loss_classes] = 1
            fed_loss_classes_mask = fed_loss_classes_mask[:K]
            weight = fed_loss_classes_mask.view(1, K).expand(N, K).float()
        else:
            weight = 1

        loss = torch.sum(cls_loss * weight) / N
        return loss

    def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes):
        """
        Args:
            proposal_boxes/gt_boxes are tensors with the same shape (R, 4 or 5).
            pred_deltas has shape (R, 4 or 5), or (R, num_classes * (4 or 5)).
            gt_classes is a long tensor of shape R, the gt class label of each proposal.
            R shall be the number of proposals.
        """
        box_dim = proposal_boxes.shape[1]  # 4 or 5
        # Regression loss is only computed for foreground proposals (those matched to a GT)
        fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0]
        if pred_deltas.shape[1] == box_dim:  # cls-agnostic regression
            fg_pred_deltas = pred_deltas[fg_inds]
        else:
            fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
                fg_inds, gt_classes[fg_inds]
            ]

        loss_box_reg = _dense_box_regression_loss(
            [proposal_boxes[fg_inds]],
            self.box2box_transform,
            [fg_pred_deltas.unsqueeze(0)],
            [gt_boxes[fg_inds]],
            ...,
            self.box_reg_loss_type,
            self.smooth_l1_beta,
        )

        # The reg loss is normalized using the total number of regions (R), not the number
        # of foreground regions even though the box regression loss is only defined on
        # foreground regions. Why? Because doing so gives equal training influence to
        # each foreground example. To see how, consider two different minibatches:
        #  (1) Contains a single foreground region
        #  (2) Contains 100 foreground regions
        # If we normalize by the number of foreground regions, the single example in
        # minibatch (1) will be given 100 times as much influence as each foreground
        # example in minibatch (2). Normalizing by the total number of regions, R,
        # means that the single example in minibatch (1) and each of the 100 examples
        # in minibatch (2) are given equal influence.
        return loss_box_reg / max(gt_classes.numel(), 1.0)  # return 0 if empty

    def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]):
        """
        Args:
            predictions: return values of :meth:`forward()`.
            proposals (list[Instances]): proposals that match the features that were
                used to compute predictions. The ``proposal_boxes`` field is expected.

        Returns:
            list[Instances]: same as `fast_rcnn_inference`.
            list[Tensor]: same as `fast_rcnn_inference`.
        """
        boxes = self.predict_boxes(predictions, proposals)
        scores = self.predict_probs(predictions, proposals)
        image_shapes = [x.image_size for x in proposals]
        return fast_rcnn_inference(
            boxes,
            scores,
            image_shapes,
            self.test_score_thresh,
            self.test_nms_thresh,
            self.test_topk_per_image,
        )

    def predict_boxes_for_gt_classes(self, predictions, proposals):
        """
        Args:
            predictions: return values of :meth:`forward()`.
            proposals (list[Instances]): proposals that match the features that were used
                to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected.

        Returns:
            list[Tensor]:
                A list of Tensors of predicted boxes for GT classes in case of
                class-specific box head. Element i of the list has shape (Ri, B), where Ri is
                the number of proposals for image i and B is the box dimension (4 or 5)
        """
        if not len(proposals):
            return []
        scores, proposal_deltas = predictions
        proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
        N, B = proposal_boxes.shape
        predict_boxes = self.box2box_transform.apply_deltas(
            proposal_deltas, proposal_boxes
        )  # Nx(KxB)

        K = predict_boxes.shape[1] // B
        if K > 1:
            gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0)
            # Some proposals are ignored or have a background class. Their gt_classes
            # cannot be used as index.
            gt_classes = gt_classes.clamp_(0, K - 1)

            predict_boxes = predict_boxes.view(N, K, B)[
                torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes
            ]
        num_prop_per_image = [len(p) for p in proposals]
        return predict_boxes.split(num_prop_per_image)

    def predict_boxes(
        self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
    ):
        """
        Args:
            predictions: return values of :meth:`forward()`.
            proposals (list[Instances]): proposals that match the features that were
                used to compute predictions. The ``proposal_boxes`` field is expected.

        Returns:
            list[Tensor]:
                A list of Tensors of predicted class-specific or class-agnostic boxes
                for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is
                the number of proposals for image i and B is the box dimension (4 or 5)
        """
        if not len(proposals):
            return []
        _, proposal_deltas = predictions
        num_prop_per_image = [len(p) for p in proposals]
        proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
        predict_boxes = self.box2box_transform.apply_deltas(
            proposal_deltas,
            proposal_boxes,
        )  # Nx(KxB)
        return predict_boxes.split(num_prop_per_image)

    def predict_probs(
        self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
    ):
        """
        Args:
            predictions: return values of :meth:`forward()`.
            proposals (list[Instances]): proposals that match the features that were
                used to compute predictions.

        Returns:
            list[Tensor]:
                A list of Tensors of predicted class probabilities for each image.
                Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i.
        """
        scores, _ = predictions
        num_inst_per_image = [len(p) for p in proposals]
        if self.use_sigmoid_ce:
            probs = scores.sigmoid()
        else:
            probs = F.softmax(scores, dim=-1)
        return probs.split(num_inst_per_image, dim=0)