Spaces:
pngwn
/
Runtime error

File size: 19,453 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright (c) Facebook, Inc. and its affiliates.
import datetime
import json
import logging
import os
import time
from collections import defaultdict
from contextlib import contextmanager
from functools import cached_property
from typing import Optional
import torch
from fvcore.common.history_buffer import HistoryBuffer

from detectron2.utils.file_io import PathManager

__all__ = [
    "get_event_storage",
    "has_event_storage",
    "JSONWriter",
    "TensorboardXWriter",
    "CommonMetricPrinter",
    "EventStorage",
]

_CURRENT_STORAGE_STACK = []


def get_event_storage():
    """
    Returns:
        The :class:`EventStorage` object that's currently being used.
        Throws an error if no :class:`EventStorage` is currently enabled.
    """
    assert len(
        _CURRENT_STORAGE_STACK
    ), "get_event_storage() has to be called inside a 'with EventStorage(...)' context!"
    return _CURRENT_STORAGE_STACK[-1]


def has_event_storage():
    """
    Returns:
        Check if there are EventStorage() context existed.
    """
    return len(_CURRENT_STORAGE_STACK) > 0


class EventWriter:
    """
    Base class for writers that obtain events from :class:`EventStorage` and process them.
    """

    def write(self):
        raise NotImplementedError

    def close(self):
        pass


class JSONWriter(EventWriter):
    """
    Write scalars to a json file.

    It saves scalars as one json per line (instead of a big json) for easy parsing.

    Examples parsing such a json file:
    ::
        $ cat metrics.json | jq -s '.[0:2]'
        [
          {
            "data_time": 0.008433341979980469,
            "iteration": 19,
            "loss": 1.9228371381759644,
            "loss_box_reg": 0.050025828182697296,
            "loss_classifier": 0.5316952466964722,
            "loss_mask": 0.7236229181289673,
            "loss_rpn_box": 0.0856662318110466,
            "loss_rpn_cls": 0.48198649287223816,
            "lr": 0.007173333333333333,
            "time": 0.25401854515075684
          },
          {
            "data_time": 0.007216215133666992,
            "iteration": 39,
            "loss": 1.282649278640747,
            "loss_box_reg": 0.06222952902317047,
            "loss_classifier": 0.30682939291000366,
            "loss_mask": 0.6970193982124329,
            "loss_rpn_box": 0.038663312792778015,
            "loss_rpn_cls": 0.1471673548221588,
            "lr": 0.007706666666666667,
            "time": 0.2490077018737793
          }
        ]

        $ cat metrics.json | jq '.loss_mask'
        0.7126231789588928
        0.689423680305481
        0.6776131987571716
        ...

    """

    def __init__(self, json_file, window_size=20):
        """
        Args:
            json_file (str): path to the json file. New data will be appended if the file exists.
            window_size (int): the window size of median smoothing for the scalars whose
                `smoothing_hint` are True.
        """
        self._file_handle = PathManager.open(json_file, "a")
        self._window_size = window_size
        self._last_write = -1

    def write(self):
        storage = get_event_storage()
        to_save = defaultdict(dict)

        for k, (v, iter) in storage.latest_with_smoothing_hint(self._window_size).items():
            # keep scalars that have not been written
            if iter <= self._last_write:
                continue
            to_save[iter][k] = v
        if len(to_save):
            all_iters = sorted(to_save.keys())
            self._last_write = max(all_iters)

        for itr, scalars_per_iter in to_save.items():
            scalars_per_iter["iteration"] = itr
            self._file_handle.write(json.dumps(scalars_per_iter, sort_keys=True) + "\n")
        self._file_handle.flush()
        try:
            os.fsync(self._file_handle.fileno())
        except AttributeError:
            pass

    def close(self):
        self._file_handle.close()


class TensorboardXWriter(EventWriter):
    """
    Write all scalars to a tensorboard file.
    """

    def __init__(self, log_dir: str, window_size: int = 20, **kwargs):
        """
        Args:
            log_dir (str): the directory to save the output events
            window_size (int): the scalars will be median-smoothed by this window size

            kwargs: other arguments passed to `torch.utils.tensorboard.SummaryWriter(...)`
        """
        self._window_size = window_size
        self._writer_args = {"log_dir": log_dir, **kwargs}
        self._last_write = -1

    @cached_property
    def _writer(self):
        from torch.utils.tensorboard import SummaryWriter

        return SummaryWriter(**self._writer_args)

    def write(self):
        storage = get_event_storage()
        new_last_write = self._last_write
        for k, (v, iter) in storage.latest_with_smoothing_hint(self._window_size).items():
            if iter > self._last_write:
                self._writer.add_scalar(k, v, iter)
                new_last_write = max(new_last_write, iter)
        self._last_write = new_last_write

        # storage.put_{image,histogram} is only meant to be used by
        # tensorboard writer. So we access its internal fields directly from here.
        if len(storage._vis_data) >= 1:
            for img_name, img, step_num in storage._vis_data:
                self._writer.add_image(img_name, img, step_num)
            # Storage stores all image data and rely on this writer to clear them.
            # As a result it assumes only one writer will use its image data.
            # An alternative design is to let storage store limited recent
            # data (e.g. only the most recent image) that all writers can access.
            # In that case a writer may not see all image data if its period is long.
            storage.clear_images()

        if len(storage._histograms) >= 1:
            for params in storage._histograms:
                self._writer.add_histogram_raw(**params)
            storage.clear_histograms()

    def close(self):
        if "_writer" in self.__dict__:
            self._writer.close()


class CommonMetricPrinter(EventWriter):
    """
    Print **common** metrics to the terminal, including
    iteration time, ETA, memory, all losses, and the learning rate.
    It also applies smoothing using a window of 20 elements.

    It's meant to print common metrics in common ways.
    To print something in more customized ways, please implement a similar printer by yourself.
    """

    def __init__(self, max_iter: Optional[int] = None, window_size: int = 20):
        """
        Args:
            max_iter: the maximum number of iterations to train.
                Used to compute ETA. If not given, ETA will not be printed.
            window_size (int): the losses will be median-smoothed by this window size
        """
        self.logger = logging.getLogger("detectron2.utils.events")
        self._max_iter = max_iter
        self._window_size = window_size
        self._last_write = None  # (step, time) of last call to write(). Used to compute ETA

    def _get_eta(self, storage) -> Optional[str]:
        if self._max_iter is None:
            return ""
        iteration = storage.iter
        try:
            eta_seconds = storage.history("time").median(1000) * (self._max_iter - iteration - 1)
            storage.put_scalar("eta_seconds", eta_seconds, smoothing_hint=False)
            return str(datetime.timedelta(seconds=int(eta_seconds)))
        except KeyError:
            # estimate eta on our own - more noisy
            eta_string = None
            if self._last_write is not None:
                estimate_iter_time = (time.perf_counter() - self._last_write[1]) / (
                    iteration - self._last_write[0]
                )
                eta_seconds = estimate_iter_time * (self._max_iter - iteration - 1)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
            self._last_write = (iteration, time.perf_counter())
            return eta_string

    def write(self):
        storage = get_event_storage()
        iteration = storage.iter
        if iteration == self._max_iter:
            # This hook only reports training progress (loss, ETA, etc) but not other data,
            # therefore do not write anything after training succeeds, even if this method
            # is called.
            return

        try:
            avg_data_time = storage.history("data_time").avg(
                storage.count_samples("data_time", self._window_size)
            )
            last_data_time = storage.history("data_time").latest()
        except KeyError:
            # they may not exist in the first few iterations (due to warmup)
            # or when SimpleTrainer is not used
            avg_data_time = None
            last_data_time = None
        try:
            avg_iter_time = storage.history("time").global_avg()
            last_iter_time = storage.history("time").latest()
        except KeyError:
            avg_iter_time = None
            last_iter_time = None
        try:
            lr = "{:.5g}".format(storage.history("lr").latest())
        except KeyError:
            lr = "N/A"

        eta_string = self._get_eta(storage)

        if torch.cuda.is_available():
            max_mem_mb = torch.cuda.max_memory_allocated() / 1024.0 / 1024.0
        else:
            max_mem_mb = None

        # NOTE: max_mem is parsed by grep in "dev/parse_results.sh"
        self.logger.info(
            str.format(
                " {eta}iter: {iter}  {losses}  {non_losses}  {avg_time}{last_time}"
                + "{avg_data_time}{last_data_time} lr: {lr}  {memory}",
                eta=f"eta: {eta_string}  " if eta_string else "",
                iter=iteration,
                losses="  ".join(
                    [
                        "{}: {:.4g}".format(
                            k, v.median(storage.count_samples(k, self._window_size))
                        )
                        for k, v in storage.histories().items()
                        if "loss" in k
                    ]
                ),
                non_losses="  ".join(
                    [
                        "{}: {:.4g}".format(
                            k, v.median(storage.count_samples(k, self._window_size))
                        )
                        for k, v in storage.histories().items()
                        if "[metric]" in k
                    ]
                ),
                avg_time="time: {:.4f}  ".format(avg_iter_time)
                if avg_iter_time is not None
                else "",
                last_time="last_time: {:.4f}  ".format(last_iter_time)
                if last_iter_time is not None
                else "",
                avg_data_time="data_time: {:.4f}  ".format(avg_data_time)
                if avg_data_time is not None
                else "",
                last_data_time="last_data_time: {:.4f}  ".format(last_data_time)
                if last_data_time is not None
                else "",
                lr=lr,
                memory="max_mem: {:.0f}M".format(max_mem_mb) if max_mem_mb is not None else "",
            )
        )


class EventStorage:
    """
    The user-facing class that provides metric storage functionalities.

    In the future we may add support for storing / logging other types of data if needed.
    """

    def __init__(self, start_iter=0):
        """
        Args:
            start_iter (int): the iteration number to start with
        """
        self._history = defaultdict(HistoryBuffer)
        self._smoothing_hints = {}
        self._latest_scalars = {}
        self._iter = start_iter
        self._current_prefix = ""
        self._vis_data = []
        self._histograms = []

    def put_image(self, img_name, img_tensor):
        """
        Add an `img_tensor` associated with `img_name`, to be shown on
        tensorboard.

        Args:
            img_name (str): The name of the image to put into tensorboard.
            img_tensor (torch.Tensor or numpy.array): An `uint8` or `float`
                Tensor of shape `[channel, height, width]` where `channel` is
                3. The image format should be RGB. The elements in img_tensor
                can either have values in [0, 1] (float32) or [0, 255] (uint8).
                The `img_tensor` will be visualized in tensorboard.
        """
        self._vis_data.append((img_name, img_tensor, self._iter))

    def put_scalar(self, name, value, smoothing_hint=True, cur_iter=None):
        """
        Add a scalar `value` to the `HistoryBuffer` associated with `name`.

        Args:
            smoothing_hint (bool): a 'hint' on whether this scalar is noisy and should be
                smoothed when logged. The hint will be accessible through
                :meth:`EventStorage.smoothing_hints`.  A writer may ignore the hint
                and apply custom smoothing rule.

                It defaults to True because most scalars we save need to be smoothed to
                provide any useful signal.
            cur_iter (int): an iteration number to set explicitly instead of current iteration
        """
        name = self._current_prefix + name
        cur_iter = self._iter if cur_iter is None else cur_iter
        history = self._history[name]
        value = float(value)
        history.update(value, cur_iter)
        self._latest_scalars[name] = (value, cur_iter)

        existing_hint = self._smoothing_hints.get(name)

        if existing_hint is not None:
            assert (
                existing_hint == smoothing_hint
            ), "Scalar {} was put with a different smoothing_hint!".format(name)
        else:
            self._smoothing_hints[name] = smoothing_hint

    def put_scalars(self, *, smoothing_hint=True, cur_iter=None, **kwargs):
        """
        Put multiple scalars from keyword arguments.

        Examples:

            storage.put_scalars(loss=my_loss, accuracy=my_accuracy, smoothing_hint=True)
        """
        for k, v in kwargs.items():
            self.put_scalar(k, v, smoothing_hint=smoothing_hint, cur_iter=cur_iter)

    def put_histogram(self, hist_name, hist_tensor, bins=1000):
        """
        Create a histogram from a tensor.

        Args:
            hist_name (str): The name of the histogram to put into tensorboard.
            hist_tensor (torch.Tensor): A Tensor of arbitrary shape to be converted
                into a histogram.
            bins (int): Number of histogram bins.
        """
        ht_min, ht_max = hist_tensor.min().item(), hist_tensor.max().item()

        # Create a histogram with PyTorch
        hist_counts = torch.histc(hist_tensor, bins=bins)
        hist_edges = torch.linspace(start=ht_min, end=ht_max, steps=bins + 1, dtype=torch.float32)

        # Parameter for the add_histogram_raw function of SummaryWriter
        hist_params = dict(
            tag=hist_name,
            min=ht_min,
            max=ht_max,
            num=len(hist_tensor),
            sum=float(hist_tensor.sum()),
            sum_squares=float(torch.sum(hist_tensor**2)),
            bucket_limits=hist_edges[1:].tolist(),
            bucket_counts=hist_counts.tolist(),
            global_step=self._iter,
        )
        self._histograms.append(hist_params)

    def history(self, name):
        """
        Returns:
            HistoryBuffer: the scalar history for name
        """
        ret = self._history.get(name, None)
        if ret is None:
            raise KeyError("No history metric available for {}!".format(name))
        return ret

    def histories(self):
        """
        Returns:
            dict[name -> HistoryBuffer]: the HistoryBuffer for all scalars
        """
        return self._history

    def latest(self):
        """
        Returns:
            dict[str -> (float, int)]: mapping from the name of each scalar to the most
                recent value and the iteration number its added.
        """
        return self._latest_scalars

    def latest_with_smoothing_hint(self, window_size=20):
        """
        Similar to :meth:`latest`, but the returned values
        are either the un-smoothed original latest value,
        or a median of the given window_size,
        depend on whether the smoothing_hint is True.

        This provides a default behavior that other writers can use.

        Note: All scalars saved in the past `window_size` iterations are used for smoothing.
        This is different from the `window_size` definition in HistoryBuffer.
        Use :meth:`get_history_window_size` to get the `window_size` used in HistoryBuffer.
        """
        result = {}
        for k, (v, itr) in self._latest_scalars.items():
            result[k] = (
                self._history[k].median(self.count_samples(k, window_size))
                if self._smoothing_hints[k]
                else v,
                itr,
            )
        return result

    def count_samples(self, name, window_size=20):
        """
        Return the number of samples logged in the past `window_size` iterations.
        """
        samples = 0
        data = self._history[name].values()
        for _, iter_ in reversed(data):
            if iter_ > data[-1][1] - window_size:
                samples += 1
            else:
                break
        return samples

    def smoothing_hints(self):
        """
        Returns:
            dict[name -> bool]: the user-provided hint on whether the scalar
                is noisy and needs smoothing.
        """
        return self._smoothing_hints

    def step(self):
        """
        User should either: (1) Call this function to increment storage.iter when needed. Or
        (2) Set `storage.iter` to the correct iteration number before each iteration.

        The storage will then be able to associate the new data with an iteration number.
        """
        self._iter += 1

    @property
    def iter(self):
        """
        Returns:
            int: The current iteration number. When used together with a trainer,
                this is ensured to be the same as trainer.iter.
        """
        return self._iter

    @iter.setter
    def iter(self, val):
        self._iter = int(val)

    @property
    def iteration(self):
        # for backward compatibility
        return self._iter

    def __enter__(self):
        _CURRENT_STORAGE_STACK.append(self)
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        assert _CURRENT_STORAGE_STACK[-1] == self
        _CURRENT_STORAGE_STACK.pop()

    @contextmanager
    def name_scope(self, name):
        """
        Yields:
            A context within which all the events added to this storage
            will be prefixed by the name scope.
        """
        old_prefix = self._current_prefix
        self._current_prefix = name.rstrip("/") + "/"
        yield
        self._current_prefix = old_prefix

    def clear_images(self):
        """
        Delete all the stored images for visualization. This should be called
        after images are written to tensorboard.
        """
        self._vis_data = []

    def clear_histograms(self):
        """
        Delete all the stored histograms for visualization.
        This should be called after histograms are written to tensorboard.
        """
        self._histograms = []