Spaces:
pngwn
/
Runtime error

File size: 12,449 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# -*- coding = utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# pyre-ignore-all-errors

from detectron2.config import CfgNode as CN


def add_dataset_category_config(cfg: CN) -> None:
    """
    Add config for additional category-related dataset options
     - category whitelisting
     - category mapping
    """
    _C = cfg
    _C.DATASETS.CATEGORY_MAPS = CN(new_allowed=True)
    _C.DATASETS.WHITELISTED_CATEGORIES = CN(new_allowed=True)
    # class to mesh mapping
    _C.DATASETS.CLASS_TO_MESH_NAME_MAPPING = CN(new_allowed=True)


def add_evaluation_config(cfg: CN) -> None:
    _C = cfg
    _C.DENSEPOSE_EVALUATION = CN()
    # evaluator type, possible values:
    #  - "iou": evaluator for models that produce iou data
    #  - "cse": evaluator for models that produce cse data
    _C.DENSEPOSE_EVALUATION.TYPE = "iou"
    # storage for DensePose results, possible values:
    #  - "none": no explicit storage, all the results are stored in the
    #            dictionary with predictions, memory intensive;
    #            historically the default storage type
    #  - "ram": RAM storage, uses per-process RAM storage, which is
    #           reduced to a single process storage on later stages,
    #           less memory intensive
    #  - "file": file storage, uses per-process file-based storage,
    #            the least memory intensive, but may create bottlenecks
    #            on file system accesses
    _C.DENSEPOSE_EVALUATION.STORAGE = "none"
    # minimum threshold for IOU values: the lower its values is,
    # the more matches are produced (and the higher the AP score)
    _C.DENSEPOSE_EVALUATION.MIN_IOU_THRESHOLD = 0.5
    # Non-distributed inference is slower (at inference time) but can avoid RAM OOM
    _C.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE = True
    # evaluate mesh alignment based on vertex embeddings, only makes sense in CSE context
    _C.DENSEPOSE_EVALUATION.EVALUATE_MESH_ALIGNMENT = False
    # meshes to compute mesh alignment for
    _C.DENSEPOSE_EVALUATION.MESH_ALIGNMENT_MESH_NAMES = []


def add_bootstrap_config(cfg: CN) -> None:
    """ """
    _C = cfg
    _C.BOOTSTRAP_DATASETS = []
    _C.BOOTSTRAP_MODEL = CN()
    _C.BOOTSTRAP_MODEL.WEIGHTS = ""
    _C.BOOTSTRAP_MODEL.DEVICE = "cuda"


def get_bootstrap_dataset_config() -> CN:
    _C = CN()
    _C.DATASET = ""
    # ratio used to mix data loaders
    _C.RATIO = 0.1
    # image loader
    _C.IMAGE_LOADER = CN(new_allowed=True)
    _C.IMAGE_LOADER.TYPE = ""
    _C.IMAGE_LOADER.BATCH_SIZE = 4
    _C.IMAGE_LOADER.NUM_WORKERS = 4
    _C.IMAGE_LOADER.CATEGORIES = []
    _C.IMAGE_LOADER.MAX_COUNT_PER_CATEGORY = 1_000_000
    _C.IMAGE_LOADER.CATEGORY_TO_CLASS_MAPPING = CN(new_allowed=True)
    # inference
    _C.INFERENCE = CN()
    # batch size for model inputs
    _C.INFERENCE.INPUT_BATCH_SIZE = 4
    # batch size to group model outputs
    _C.INFERENCE.OUTPUT_BATCH_SIZE = 2
    # sampled data
    _C.DATA_SAMPLER = CN(new_allowed=True)
    _C.DATA_SAMPLER.TYPE = ""
    _C.DATA_SAMPLER.USE_GROUND_TRUTH_CATEGORIES = False
    # filter
    _C.FILTER = CN(new_allowed=True)
    _C.FILTER.TYPE = ""
    return _C


def load_bootstrap_config(cfg: CN) -> None:
    """
    Bootstrap datasets are given as a list of `dict` that are not automatically
    converted into CfgNode. This method processes all bootstrap dataset entries
    and ensures that they are in CfgNode format and comply with the specification
    """
    if not cfg.BOOTSTRAP_DATASETS:
        return

    bootstrap_datasets_cfgnodes = []
    for dataset_cfg in cfg.BOOTSTRAP_DATASETS:
        _C = get_bootstrap_dataset_config().clone()
        _C.merge_from_other_cfg(CN(dataset_cfg))
        bootstrap_datasets_cfgnodes.append(_C)
    cfg.BOOTSTRAP_DATASETS = bootstrap_datasets_cfgnodes


def add_densepose_head_cse_config(cfg: CN) -> None:
    """
    Add configuration options for Continuous Surface Embeddings (CSE)
    """
    _C = cfg
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE = CN()
    # Dimensionality D of the embedding space
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE = 16
    # Embedder specifications for various mesh IDs
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS = CN(new_allowed=True)
    # normalization coefficient for embedding distances
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDING_DIST_GAUSS_SIGMA = 0.01
    # normalization coefficient for geodesic distances
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.GEODESIC_DIST_GAUSS_SIGMA = 0.01
    # embedding loss weight
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_WEIGHT = 0.6
    # embedding loss name, currently the following options are supported:
    # - EmbeddingLoss: cross-entropy on vertex labels
    # - SoftEmbeddingLoss: cross-entropy on vertex label combined with
    #    Gaussian penalty on distance between vertices
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_NAME = "EmbeddingLoss"
    # optimizer hyperparameters
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.FEATURES_LR_FACTOR = 1.0
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDING_LR_FACTOR = 1.0
    # Shape to shape cycle consistency loss parameters:
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS = CN({"ENABLED": False})
    # shape to shape cycle consistency loss weight
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.WEIGHT = 0.025
    # norm type used for loss computation
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.NORM_P = 2
    # normalization term for embedding similarity matrices
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.TEMPERATURE = 0.05
    # maximum number of vertices to include into shape to shape cycle loss
    # if negative or zero, all vertices are considered
    # if positive, random subset of vertices of given size is considered
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.MAX_NUM_VERTICES = 4936
    # Pixel to shape cycle consistency loss parameters:
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS = CN({"ENABLED": False})
    # pixel to shape cycle consistency loss weight
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.WEIGHT = 0.0001
    # norm type used for loss computation
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NORM_P = 2
    # map images to all meshes and back (if false, use only gt meshes from the batch)
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.USE_ALL_MESHES_NOT_GT_ONLY = False
    # Randomly select at most this number of pixels from every instance
    # if negative or zero, all vertices are considered
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NUM_PIXELS_TO_SAMPLE = 100
    # normalization factor for pixel to pixel distances (higher value = smoother distribution)
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.PIXEL_SIGMA = 5.0
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_PIXEL_TO_VERTEX = 0.05
    _C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_VERTEX_TO_PIXEL = 0.05


def add_densepose_head_config(cfg: CN) -> None:
    """
    Add config for densepose head.
    """
    _C = cfg

    _C.MODEL.DENSEPOSE_ON = True

    _C.MODEL.ROI_DENSEPOSE_HEAD = CN()
    _C.MODEL.ROI_DENSEPOSE_HEAD.NAME = ""
    _C.MODEL.ROI_DENSEPOSE_HEAD.NUM_STACKED_CONVS = 8
    # Number of parts used for point labels
    _C.MODEL.ROI_DENSEPOSE_HEAD.NUM_PATCHES = 24
    _C.MODEL.ROI_DENSEPOSE_HEAD.DECONV_KERNEL = 4
    _C.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_DIM = 512
    _C.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_KERNEL = 3
    _C.MODEL.ROI_DENSEPOSE_HEAD.UP_SCALE = 2
    _C.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE = 112
    _C.MODEL.ROI_DENSEPOSE_HEAD.POOLER_TYPE = "ROIAlignV2"
    _C.MODEL.ROI_DENSEPOSE_HEAD.POOLER_RESOLUTION = 28
    _C.MODEL.ROI_DENSEPOSE_HEAD.POOLER_SAMPLING_RATIO = 2
    _C.MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS = 2  # 15 or 2
    # Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD)
    _C.MODEL.ROI_DENSEPOSE_HEAD.FG_IOU_THRESHOLD = 0.7
    # Loss weights for annotation masks.(14 Parts)
    _C.MODEL.ROI_DENSEPOSE_HEAD.INDEX_WEIGHTS = 5.0
    # Loss weights for surface parts. (24 Parts)
    _C.MODEL.ROI_DENSEPOSE_HEAD.PART_WEIGHTS = 1.0
    # Loss weights for UV regression.
    _C.MODEL.ROI_DENSEPOSE_HEAD.POINT_REGRESSION_WEIGHTS = 0.01
    # Coarse segmentation is trained using instance segmentation task data
    _C.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS = False
    # For Decoder
    _C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_ON = True
    _C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NUM_CLASSES = 256
    _C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_CONV_DIMS = 256
    _C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NORM = ""
    _C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_COMMON_STRIDE = 4
    # For DeepLab head
    _C.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB = CN()
    _C.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NORM = "GN"
    _C.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NONLOCAL_ON = 0
    # Predictor class name, must be registered in DENSEPOSE_PREDICTOR_REGISTRY
    # Some registered predictors:
    #   "DensePoseChartPredictor": predicts segmentation and UV coordinates for predefined charts
    #   "DensePoseChartWithConfidencePredictor": predicts segmentation, UV coordinates
    #       and associated confidences for predefined charts (default)
    #   "DensePoseEmbeddingWithConfidencePredictor": predicts segmentation, embeddings
    #       and associated confidences for CSE
    _C.MODEL.ROI_DENSEPOSE_HEAD.PREDICTOR_NAME = "DensePoseChartWithConfidencePredictor"
    # Loss class name, must be registered in DENSEPOSE_LOSS_REGISTRY
    # Some registered losses:
    #   "DensePoseChartLoss": loss for chart-based models that estimate
    #      segmentation and UV coordinates
    #   "DensePoseChartWithConfidenceLoss": loss for chart-based models that estimate
    #      segmentation, UV coordinates and the corresponding confidences (default)
    _C.MODEL.ROI_DENSEPOSE_HEAD.LOSS_NAME = "DensePoseChartWithConfidenceLoss"
    # Confidences
    # Enable learning UV confidences (variances) along with the actual values
    _C.MODEL.ROI_DENSEPOSE_HEAD.UV_CONFIDENCE = CN({"ENABLED": False})
    # UV confidence lower bound
    _C.MODEL.ROI_DENSEPOSE_HEAD.UV_CONFIDENCE.EPSILON = 0.01
    # Enable learning segmentation confidences (variances) along with the actual values
    _C.MODEL.ROI_DENSEPOSE_HEAD.SEGM_CONFIDENCE = CN({"ENABLED": False})
    # Segmentation confidence lower bound
    _C.MODEL.ROI_DENSEPOSE_HEAD.SEGM_CONFIDENCE.EPSILON = 0.01
    # Statistical model type for confidence learning, possible values:
    # - "iid_iso": statistically independent identically distributed residuals
    #    with isotropic covariance
    # - "indep_aniso": statistically independent residuals with anisotropic
    #    covariances
    _C.MODEL.ROI_DENSEPOSE_HEAD.UV_CONFIDENCE.TYPE = "iid_iso"
    # List of angles for rotation in data augmentation during training
    _C.INPUT.ROTATION_ANGLES = [0]
    _C.TEST.AUG.ROTATION_ANGLES = ()  # Rotation TTA

    add_densepose_head_cse_config(cfg)


def add_hrnet_config(cfg: CN) -> None:
    """
    Add config for HRNet backbone.
    """
    _C = cfg

    # For HigherHRNet w32
    _C.MODEL.HRNET = CN()
    _C.MODEL.HRNET.STEM_INPLANES = 64
    _C.MODEL.HRNET.STAGE2 = CN()
    _C.MODEL.HRNET.STAGE2.NUM_MODULES = 1
    _C.MODEL.HRNET.STAGE2.NUM_BRANCHES = 2
    _C.MODEL.HRNET.STAGE2.BLOCK = "BASIC"
    _C.MODEL.HRNET.STAGE2.NUM_BLOCKS = [4, 4]
    _C.MODEL.HRNET.STAGE2.NUM_CHANNELS = [32, 64]
    _C.MODEL.HRNET.STAGE2.FUSE_METHOD = "SUM"
    _C.MODEL.HRNET.STAGE3 = CN()
    _C.MODEL.HRNET.STAGE3.NUM_MODULES = 4
    _C.MODEL.HRNET.STAGE3.NUM_BRANCHES = 3
    _C.MODEL.HRNET.STAGE3.BLOCK = "BASIC"
    _C.MODEL.HRNET.STAGE3.NUM_BLOCKS = [4, 4, 4]
    _C.MODEL.HRNET.STAGE3.NUM_CHANNELS = [32, 64, 128]
    _C.MODEL.HRNET.STAGE3.FUSE_METHOD = "SUM"
    _C.MODEL.HRNET.STAGE4 = CN()
    _C.MODEL.HRNET.STAGE4.NUM_MODULES = 3
    _C.MODEL.HRNET.STAGE4.NUM_BRANCHES = 4
    _C.MODEL.HRNET.STAGE4.BLOCK = "BASIC"
    _C.MODEL.HRNET.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
    _C.MODEL.HRNET.STAGE4.NUM_CHANNELS = [32, 64, 128, 256]
    _C.MODEL.HRNET.STAGE4.FUSE_METHOD = "SUM"

    _C.MODEL.HRNET.HRFPN = CN()
    _C.MODEL.HRNET.HRFPN.OUT_CHANNELS = 256


def add_densepose_config(cfg: CN) -> None:
    add_densepose_head_config(cfg)
    add_hrnet_config(cfg)
    add_bootstrap_config(cfg)
    add_dataset_category_config(cfg)
    add_evaluation_config(cfg)