Spaces:
pngwn
/
Runtime error

File size: 5,512 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) Facebook, Inc. and its affiliates.
from __future__ import division
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import device
from torch.nn import functional as F

from detectron2.layers.wrappers import move_device_like, shapes_to_tensor


class ImageList:
    """
    Structure that holds a list of images (of possibly
    varying sizes) as a single tensor.
    This works by padding the images to the same size.
    The original sizes of each image is stored in `image_sizes`.

    Attributes:
        image_sizes (list[tuple[int, int]]): each tuple is (h, w).
            During tracing, it becomes list[Tensor] instead.
    """

    def __init__(self, tensor: torch.Tensor, image_sizes: List[Tuple[int, int]]):
        """
        Arguments:
            tensor (Tensor): of shape (N, H, W) or (N, C_1, ..., C_K, H, W) where K >= 1
            image_sizes (list[tuple[int, int]]): Each tuple is (h, w). It can
                be smaller than (H, W) due to padding.
        """
        self.tensor = tensor
        self.image_sizes = image_sizes

    def __len__(self) -> int:
        return len(self.image_sizes)

    def __getitem__(self, idx) -> torch.Tensor:
        """
        Access the individual image in its original size.

        Args:
            idx: int or slice

        Returns:
            Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1
        """
        size = self.image_sizes[idx]
        return self.tensor[idx, ..., : size[0], : size[1]]

    @torch.jit.unused
    def to(self, *args: Any, **kwargs: Any) -> "ImageList":
        cast_tensor = self.tensor.to(*args, **kwargs)
        return ImageList(cast_tensor, self.image_sizes)

    @property
    def device(self) -> device:
        return self.tensor.device

    @staticmethod
    def from_tensors(
        tensors: List[torch.Tensor],
        size_divisibility: int = 0,
        pad_value: float = 0.0,
        padding_constraints: Optional[Dict[str, int]] = None,
    ) -> "ImageList":
        """
        Args:
            tensors: a tuple or list of `torch.Tensor`, each of shape (Hi, Wi) or
                (C_1, ..., C_K, Hi, Wi) where K >= 1. The Tensors will be padded
                to the same shape with `pad_value`.
            size_divisibility (int): If `size_divisibility > 0`, add padding to ensure
                the common height and width is divisible by `size_divisibility`.
                This depends on the model and many models need a divisibility of 32.
            pad_value (float): value to pad.
            padding_constraints (optional[Dict]): If given, it would follow the format as
                {"size_divisibility": int, "square_size": int}, where `size_divisibility` will
                overwrite the above one if presented and `square_size` indicates the
                square padding size if `square_size` > 0.
        Returns:
            an `ImageList`.
        """
        assert len(tensors) > 0
        assert isinstance(tensors, (tuple, list))
        for t in tensors:
            assert isinstance(t, torch.Tensor), type(t)
            assert t.shape[:-2] == tensors[0].shape[:-2], t.shape

        image_sizes = [(im.shape[-2], im.shape[-1]) for im in tensors]
        image_sizes_tensor = [shapes_to_tensor(x) for x in image_sizes]
        max_size = torch.stack(image_sizes_tensor).max(0).values

        if padding_constraints is not None:
            square_size = padding_constraints.get("square_size", 0)
            if square_size > 0:
                # pad to square.
                max_size[0] = max_size[1] = square_size
            if "size_divisibility" in padding_constraints:
                size_divisibility = padding_constraints["size_divisibility"]
        if size_divisibility > 1:
            stride = size_divisibility
            # the last two dims are H,W, both subject to divisibility requirement
            max_size = (max_size + (stride - 1)).div(stride, rounding_mode="floor") * stride

        # handle weirdness of scripting and tracing ...
        if torch.jit.is_scripting():
            max_size: List[int] = max_size.to(dtype=torch.long).tolist()
        else:
            if torch.jit.is_tracing():
                image_sizes = image_sizes_tensor

        if len(tensors) == 1:
            # This seems slightly (2%) faster.
            # TODO: check whether it's faster for multiple images as well
            image_size = image_sizes[0]
            padding_size = [0, max_size[-1] - image_size[1], 0, max_size[-2] - image_size[0]]
            batched_imgs = F.pad(tensors[0], padding_size, value=pad_value).unsqueeze_(0)
        else:
            # max_size can be a tensor in tracing mode, therefore convert to list
            batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size)
            device = (
                None if torch.jit.is_scripting() else ("cpu" if torch.jit.is_tracing() else None)
            )
            batched_imgs = tensors[0].new_full(batch_shape, pad_value, device=device)
            batched_imgs = move_device_like(batched_imgs, tensors[0])
            for i, img in enumerate(tensors):
                # Use `batched_imgs` directly instead of `img, pad_img = zip(tensors, batched_imgs)`
                # Tracing mode cannot capture `copy_()` of temporary locals
                batched_imgs[i, ..., : img.shape[-2], : img.shape[-1]].copy_(img)

        return ImageList(batched_imgs.contiguous(), image_sizes)