File size: 16,081 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import logging
import numpy as np
import torch
import torch.nn as nn
from .backbone import Backbone
from .utils import (
PatchEmbed,
add_decomposed_rel_pos,
get_abs_pos,
window_partition,
window_unpartition,
)
logger = logging.getLogger(__name__)
__all__ = ["MViT"]
def attention_pool(x, pool, norm=None):
# (B, H, W, C) -> (B, C, H, W)
x = x.permute(0, 3, 1, 2)
x = pool(x)
# (B, C, H1, W1) -> (B, H1, W1, C)
x = x.permute(0, 2, 3, 1)
if norm:
x = norm(x)
return x
class MultiScaleAttention(nn.Module):
"""Multiscale Multi-head Attention block."""
def __init__(
self,
dim,
dim_out,
num_heads,
qkv_bias=True,
norm_layer=nn.LayerNorm,
pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
residual_pooling=True,
window_size=0,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
dim_out (int): Number of output channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
pool_kernel (tuple): kernel size for qkv pooling layers.
stride_q (int): stride size for q pooling layer.
stride_kv (int): stride size for kv pooling layer.
residual_pooling (bool): If true, enable residual pooling.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim_out // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias)
self.proj = nn.Linear(dim_out, dim_out)
# qkv pooling
pool_padding = [k // 2 for k in pool_kernel]
dim_conv = dim_out // num_heads
self.pool_q = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_q,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_q = norm_layer(dim_conv)
self.pool_k = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_kv,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_k = norm_layer(dim_conv)
self.pool_v = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_kv,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_v = norm_layer(dim_conv)
self.window_size = window_size
if window_size:
self.q_win_size = window_size // stride_q
self.kv_win_size = window_size // stride_kv
self.residual_pooling = residual_pooling
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
# initialize relative positional embeddings
assert input_size[0] == input_size[1]
size = input_size[0]
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim))
if not rel_pos_zero_init:
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
def forward(self, x):
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H, W, C)
qkv = self.qkv(x).reshape(B, H, W, 3, self.num_heads, -1).permute(3, 0, 4, 1, 2, 5)
# q, k, v with shape (B * nHead, H, W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H, W, -1).unbind(0)
q = attention_pool(q, self.pool_q, self.norm_q)
k = attention_pool(k, self.pool_k, self.norm_k)
v = attention_pool(v, self.pool_v, self.norm_v)
ori_q = q
if self.window_size:
q, q_hw_pad = window_partition(q, self.q_win_size)
k, kv_hw_pad = window_partition(k, self.kv_win_size)
v, _ = window_partition(v, self.kv_win_size)
q_hw = (self.q_win_size, self.q_win_size)
kv_hw = (self.kv_win_size, self.kv_win_size)
else:
q_hw = q.shape[1:3]
kv_hw = k.shape[1:3]
q = q.view(q.shape[0], np.prod(q_hw), -1)
k = k.view(k.shape[0], np.prod(kv_hw), -1)
v = v.view(v.shape[0], np.prod(kv_hw), -1)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, q_hw, kv_hw)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.view(x.shape[0], q_hw[0], q_hw[1], -1)
if self.window_size:
x = window_unpartition(x, self.q_win_size, q_hw_pad, ori_q.shape[1:3])
if self.residual_pooling:
x += ori_q
H, W = x.shape[1], x.shape[2]
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
"""Multiscale Transformer blocks"""
def __init__(
self,
dim,
dim_out,
num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
qkv_pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
residual_pooling=True,
window_size=0,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
dim_out (int): Number of output channels.
num_heads (int): Number of attention heads in the MViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
stride_q (int): stride size for q pooling layer.
stride_kv (int): stride size for kv pooling layer.
residual_pooling (bool): If true, enable residual pooling.
window_size (int): Window size for window attention blocks. If it equals 0, then not
use window attention.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = MultiScaleAttention(
dim,
dim_out,
num_heads=num_heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
pool_kernel=qkv_pool_kernel,
stride_q=stride_q,
stride_kv=stride_kv,
residual_pooling=residual_pooling,
window_size=window_size,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size,
)
from timm.models.layers import DropPath, Mlp
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(
in_features=dim_out,
hidden_features=int(dim_out * mlp_ratio),
out_features=dim_out,
act_layer=act_layer,
)
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
if stride_q > 1:
kernel_skip = stride_q + 1
padding_skip = int(kernel_skip // 2)
self.pool_skip = nn.MaxPool2d(kernel_skip, stride_q, padding_skip, ceil_mode=False)
def forward(self, x):
x_norm = self.norm1(x)
x_block = self.attn(x_norm)
if hasattr(self, "proj"):
x = self.proj(x_norm)
if hasattr(self, "pool_skip"):
x = attention_pool(x, self.pool_skip)
x = x + self.drop_path(x_block)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MViT(Backbone):
"""
This module implements Multiscale Vision Transformer (MViT) backbone in :paper:'mvitv2'.
"""
def __init__(
self,
img_size=224,
patch_kernel=(7, 7),
patch_stride=(4, 4),
patch_padding=(3, 3),
in_chans=3,
embed_dim=96,
depth=16,
num_heads=1,
last_block_indexes=(0, 2, 11, 15),
qkv_pool_kernel=(3, 3),
adaptive_kv_stride=4,
adaptive_window_size=56,
residual_pooling=True,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_abs_pos=False,
use_rel_pos=True,
rel_pos_zero_init=True,
use_act_checkpoint=False,
pretrain_img_size=224,
pretrain_use_cls_token=True,
out_features=("scale2", "scale3", "scale4", "scale5"),
):
"""
Args:
img_size (int): Input image size.
patch_kernel (tuple): kernel size for patch embedding.
patch_stride (tuple): stride size for patch embedding.
patch_padding (tuple): padding size for patch embedding.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of MViT.
num_heads (int): Number of base attention heads in each MViT block.
last_block_indexes (tuple): Block indexes for last blocks in each stage.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
adaptive_kv_stride (int): adaptive stride size for kv pooling.
adaptive_window_size (int): adaptive window size for window attention blocks.
residual_pooling (bool): If true, enable residual pooling.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path_rate (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
use_act_checkpoint (bool): If True, use activation checkpointing.
pretrain_img_size (int): input image size for pretraining models.
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
out_features (tuple): name of the feature maps from each stage.
"""
super().__init__()
self.pretrain_use_cls_token = pretrain_use_cls_token
self.patch_embed = PatchEmbed(
kernel_size=patch_kernel,
stride=patch_stride,
padding=patch_padding,
in_chans=in_chans,
embed_dim=embed_dim,
)
if use_abs_pos:
# Initialize absoluate positional embedding with pretrain image size.
num_patches = (pretrain_img_size // patch_stride[0]) * (
pretrain_img_size // patch_stride[1]
)
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
dim_out = embed_dim
stride_kv = adaptive_kv_stride
window_size = adaptive_window_size
input_size = (img_size // patch_stride[0], img_size // patch_stride[1])
stage = 2
stride = patch_stride[0]
self._out_feature_strides = {}
self._out_feature_channels = {}
self.blocks = nn.ModuleList()
for i in range(depth):
# Multiply stride_kv by 2 if it's the last block of stage2 and stage3.
if i == last_block_indexes[1] or i == last_block_indexes[2]:
stride_kv_ = stride_kv * 2
else:
stride_kv_ = stride_kv
# hybrid window attention: global attention in last three stages.
window_size_ = 0 if i in last_block_indexes[1:] else window_size
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
qkv_pool_kernel=qkv_pool_kernel,
stride_q=2 if i - 1 in last_block_indexes else 1,
stride_kv=stride_kv_,
residual_pooling=residual_pooling,
window_size=window_size_,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size,
)
if use_act_checkpoint:
# TODO: use torch.utils.checkpoint
from fairscale.nn.checkpoint import checkpoint_wrapper
block = checkpoint_wrapper(block)
self.blocks.append(block)
embed_dim = dim_out
if i in last_block_indexes:
name = f"scale{stage}"
if name in out_features:
self._out_feature_channels[name] = dim_out
self._out_feature_strides[name] = stride
self.add_module(f"{name}_norm", norm_layer(dim_out))
dim_out *= 2
num_heads *= 2
stride_kv = max(stride_kv // 2, 1)
stride *= 2
stage += 1
if i - 1 in last_block_indexes:
window_size = window_size // 2
input_size = [s // 2 for s in input_size]
self._out_features = out_features
self._last_block_indexes = last_block_indexes
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + get_abs_pos(self.pos_embed, self.pretrain_use_cls_token, x.shape[1:3])
outputs = {}
stage = 2
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in self._last_block_indexes:
name = f"scale{stage}"
if name in self._out_features:
x_out = getattr(self, f"{name}_norm")(x)
outputs[name] = x_out.permute(0, 3, 1, 2)
stage += 1
return outputs
|