|
|
|
import itertools |
|
import json |
|
import logging |
|
import numpy as np |
|
import os |
|
from collections import OrderedDict |
|
from typing import Optional, Union |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from PIL import Image |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.utils.comm import all_gather, is_main_process, synchronize |
|
from detectron2.utils.file_io import PathManager |
|
|
|
from .evaluator import DatasetEvaluator |
|
|
|
_CV2_IMPORTED = True |
|
try: |
|
import cv2 |
|
except ImportError: |
|
|
|
_CV2_IMPORTED = False |
|
|
|
|
|
def load_image_into_numpy_array( |
|
filename: str, |
|
copy: bool = False, |
|
dtype: Optional[Union[np.dtype, str]] = None, |
|
) -> np.ndarray: |
|
with PathManager.open(filename, "rb") as f: |
|
array = np.array(Image.open(f), copy=copy, dtype=dtype) |
|
return array |
|
|
|
|
|
class SemSegEvaluator(DatasetEvaluator): |
|
""" |
|
Evaluate semantic segmentation metrics. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset_name, |
|
distributed=True, |
|
output_dir=None, |
|
*, |
|
sem_seg_loading_fn=load_image_into_numpy_array, |
|
num_classes=None, |
|
ignore_label=None, |
|
): |
|
""" |
|
Args: |
|
dataset_name (str): name of the dataset to be evaluated. |
|
distributed (bool): if True, will collect results from all ranks for evaluation. |
|
Otherwise, will evaluate the results in the current process. |
|
output_dir (str): an output directory to dump results. |
|
sem_seg_loading_fn: function to read sem seg file and load into numpy array. |
|
Default provided, but projects can customize. |
|
num_classes, ignore_label: deprecated argument |
|
""" |
|
self._logger = logging.getLogger(__name__) |
|
if num_classes is not None: |
|
self._logger.warn( |
|
"SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata." |
|
) |
|
if ignore_label is not None: |
|
self._logger.warn( |
|
"SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata." |
|
) |
|
self._dataset_name = dataset_name |
|
self._distributed = distributed |
|
self._output_dir = output_dir |
|
|
|
self._cpu_device = torch.device("cpu") |
|
|
|
self.input_file_to_gt_file = { |
|
dataset_record["file_name"]: dataset_record["sem_seg_file_name"] |
|
for dataset_record in DatasetCatalog.get(dataset_name) |
|
} |
|
|
|
meta = MetadataCatalog.get(dataset_name) |
|
|
|
try: |
|
c2d = meta.stuff_dataset_id_to_contiguous_id |
|
self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()} |
|
except AttributeError: |
|
self._contiguous_id_to_dataset_id = None |
|
self._class_names = meta.stuff_classes |
|
self.sem_seg_loading_fn = sem_seg_loading_fn |
|
self._num_classes = len(meta.stuff_classes) |
|
if num_classes is not None: |
|
assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}" |
|
self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label |
|
|
|
|
|
self._compute_boundary_iou = True |
|
if not _CV2_IMPORTED: |
|
self._compute_boundary_iou = False |
|
self._logger.warn( |
|
"""Boundary IoU calculation requires OpenCV. B-IoU metrics are |
|
not going to be computed because OpenCV is not available to import.""" |
|
) |
|
if self._num_classes >= np.iinfo(np.uint8).max: |
|
self._compute_boundary_iou = False |
|
self._logger.warn( |
|
f"""SemSegEvaluator(num_classes) is more than supported value for Boundary IoU calculation! |
|
B-IoU metrics are not going to be computed. Max allowed value (exclusive) |
|
for num_classes for calculating Boundary IoU is {np.iinfo(np.uint8).max}. |
|
The number of classes of dataset {self._dataset_name} is {self._num_classes}""" |
|
) |
|
|
|
def reset(self): |
|
self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64) |
|
self._b_conf_matrix = np.zeros( |
|
(self._num_classes + 1, self._num_classes + 1), dtype=np.int64 |
|
) |
|
self._predictions = [] |
|
|
|
def process(self, inputs, outputs): |
|
""" |
|
Args: |
|
inputs: the inputs to a model. |
|
It is a list of dicts. Each dict corresponds to an image and |
|
contains keys like "height", "width", "file_name". |
|
outputs: the outputs of a model. It is either list of semantic segmentation predictions |
|
(Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic |
|
segmentation prediction in the same format. |
|
""" |
|
for input, output in zip(inputs, outputs): |
|
output = output["sem_seg"].argmax(dim=0).to(self._cpu_device) |
|
pred = np.array(output, dtype=int) |
|
gt_filename = self.input_file_to_gt_file[input["file_name"]] |
|
gt = self.sem_seg_loading_fn(gt_filename, dtype=int) |
|
|
|
gt[gt == self._ignore_label] = self._num_classes |
|
|
|
self._conf_matrix += np.bincount( |
|
(self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1), |
|
minlength=self._conf_matrix.size, |
|
).reshape(self._conf_matrix.shape) |
|
|
|
if self._compute_boundary_iou: |
|
b_gt = self._mask_to_boundary(gt.astype(np.uint8)) |
|
b_pred = self._mask_to_boundary(pred.astype(np.uint8)) |
|
|
|
self._b_conf_matrix += np.bincount( |
|
(self._num_classes + 1) * b_pred.reshape(-1) + b_gt.reshape(-1), |
|
minlength=self._conf_matrix.size, |
|
).reshape(self._conf_matrix.shape) |
|
|
|
self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"])) |
|
|
|
def evaluate(self): |
|
""" |
|
Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval): |
|
|
|
* Mean intersection-over-union averaged across classes (mIoU) |
|
* Frequency Weighted IoU (fwIoU) |
|
* Mean pixel accuracy averaged across classes (mACC) |
|
* Pixel Accuracy (pACC) |
|
""" |
|
if self._distributed: |
|
synchronize() |
|
conf_matrix_list = all_gather(self._conf_matrix) |
|
b_conf_matrix_list = all_gather(self._b_conf_matrix) |
|
self._predictions = all_gather(self._predictions) |
|
self._predictions = list(itertools.chain(*self._predictions)) |
|
if not is_main_process(): |
|
return |
|
|
|
self._conf_matrix = np.zeros_like(self._conf_matrix) |
|
for conf_matrix in conf_matrix_list: |
|
self._conf_matrix += conf_matrix |
|
|
|
self._b_conf_matrix = np.zeros_like(self._b_conf_matrix) |
|
for b_conf_matrix in b_conf_matrix_list: |
|
self._b_conf_matrix += b_conf_matrix |
|
|
|
if self._output_dir: |
|
PathManager.mkdirs(self._output_dir) |
|
file_path = os.path.join(self._output_dir, "sem_seg_predictions.json") |
|
with PathManager.open(file_path, "w") as f: |
|
f.write(json.dumps(self._predictions)) |
|
|
|
acc = np.full(self._num_classes, np.nan, dtype=float) |
|
iou = np.full(self._num_classes, np.nan, dtype=float) |
|
tp = self._conf_matrix.diagonal()[:-1].astype(float) |
|
pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(float) |
|
class_weights = pos_gt / np.sum(pos_gt) |
|
pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(float) |
|
acc_valid = pos_gt > 0 |
|
acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid] |
|
union = pos_gt + pos_pred - tp |
|
iou_valid = np.logical_and(acc_valid, union > 0) |
|
iou[iou_valid] = tp[iou_valid] / union[iou_valid] |
|
macc = np.sum(acc[acc_valid]) / np.sum(acc_valid) |
|
miou = np.sum(iou[iou_valid]) / np.sum(iou_valid) |
|
fiou = np.sum(iou[iou_valid] * class_weights[iou_valid]) |
|
pacc = np.sum(tp) / np.sum(pos_gt) |
|
|
|
if self._compute_boundary_iou: |
|
b_iou = np.full(self._num_classes, np.nan, dtype=float) |
|
b_tp = self._b_conf_matrix.diagonal()[:-1].astype(float) |
|
b_pos_gt = np.sum(self._b_conf_matrix[:-1, :-1], axis=0).astype(float) |
|
b_pos_pred = np.sum(self._b_conf_matrix[:-1, :-1], axis=1).astype(float) |
|
b_union = b_pos_gt + b_pos_pred - b_tp |
|
b_iou_valid = b_union > 0 |
|
b_iou[b_iou_valid] = b_tp[b_iou_valid] / b_union[b_iou_valid] |
|
|
|
res = {} |
|
res["mIoU"] = 100 * miou |
|
res["fwIoU"] = 100 * fiou |
|
for i, name in enumerate(self._class_names): |
|
res[f"IoU-{name}"] = 100 * iou[i] |
|
if self._compute_boundary_iou: |
|
res[f"BoundaryIoU-{name}"] = 100 * b_iou[i] |
|
res[f"min(IoU, B-Iou)-{name}"] = 100 * min(iou[i], b_iou[i]) |
|
res["mACC"] = 100 * macc |
|
res["pACC"] = 100 * pacc |
|
for i, name in enumerate(self._class_names): |
|
res[f"ACC-{name}"] = 100 * acc[i] |
|
|
|
if self._output_dir: |
|
file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth") |
|
with PathManager.open(file_path, "wb") as f: |
|
torch.save(res, f) |
|
results = OrderedDict({"sem_seg": res}) |
|
self._logger.info(results) |
|
return results |
|
|
|
def encode_json_sem_seg(self, sem_seg, input_file_name): |
|
""" |
|
Convert semantic segmentation to COCO stuff format with segments encoded as RLEs. |
|
See http://cocodataset.org/#format-results |
|
""" |
|
json_list = [] |
|
for label in np.unique(sem_seg): |
|
if self._contiguous_id_to_dataset_id is not None: |
|
assert ( |
|
label in self._contiguous_id_to_dataset_id |
|
), "Label {} is not in the metadata info for {}".format(label, self._dataset_name) |
|
dataset_id = self._contiguous_id_to_dataset_id[label] |
|
else: |
|
dataset_id = int(label) |
|
mask = (sem_seg == label).astype(np.uint8) |
|
mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0] |
|
mask_rle["counts"] = mask_rle["counts"].decode("utf-8") |
|
json_list.append( |
|
{"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle} |
|
) |
|
return json_list |
|
|
|
def _mask_to_boundary(self, mask: np.ndarray, dilation_ratio=0.02): |
|
assert mask.ndim == 2, "mask_to_boundary expects a 2-dimensional image" |
|
h, w = mask.shape |
|
diag_len = np.sqrt(h**2 + w**2) |
|
dilation = max(1, int(round(dilation_ratio * diag_len))) |
|
kernel = np.ones((3, 3), dtype=np.uint8) |
|
|
|
padded_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) |
|
eroded_mask_with_padding = cv2.erode(padded_mask, kernel, iterations=dilation) |
|
eroded_mask = eroded_mask_with_padding[1:-1, 1:-1] |
|
boundary = mask - eroded_mask |
|
return boundary |
|
|