|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : [email protected] |
|
@File : datasets.py |
|
@Time : 8/4/19 3:35 PM |
|
@Desc : |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
import os |
|
import numpy as np |
|
import random |
|
import torch |
|
import cv2 |
|
from torch.utils import data |
|
from utils.transforms import get_affine_transform |
|
|
|
|
|
class LIPDataSet(data.Dataset): |
|
def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25, |
|
rotation_factor=30, ignore_label=255, transform=None): |
|
self.root = root |
|
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0] |
|
self.crop_size = np.asarray(crop_size) |
|
self.ignore_label = ignore_label |
|
self.scale_factor = scale_factor |
|
self.rotation_factor = rotation_factor |
|
self.flip_prob = 0.5 |
|
self.transform = transform |
|
self.dataset = dataset |
|
|
|
list_path = os.path.join(self.root, self.dataset + '_id.txt') |
|
train_list = [i_id.strip() for i_id in open(list_path)] |
|
|
|
self.train_list = train_list |
|
self.number_samples = len(self.train_list) |
|
|
|
def __len__(self): |
|
return self.number_samples |
|
|
|
def _box2cs(self, box): |
|
x, y, w, h = box[:4] |
|
return self._xywh2cs(x, y, w, h) |
|
|
|
def _xywh2cs(self, x, y, w, h): |
|
center = np.zeros((2), dtype=np.float32) |
|
center[0] = x + w * 0.5 |
|
center[1] = y + h * 0.5 |
|
if w > self.aspect_ratio * h: |
|
h = w * 1.0 / self.aspect_ratio |
|
elif w < self.aspect_ratio * h: |
|
w = h * self.aspect_ratio |
|
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32) |
|
return center, scale |
|
|
|
def __getitem__(self, index): |
|
train_item = self.train_list[index] |
|
|
|
im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg') |
|
parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png') |
|
|
|
im = cv2.imread(im_path, cv2.IMREAD_COLOR) |
|
h, w, _ = im.shape |
|
parsing_anno = np.zeros((h, w), dtype=np.long) |
|
|
|
|
|
person_center, s = self._box2cs([0, 0, w - 1, h - 1]) |
|
r = 0 |
|
|
|
if self.dataset != 'test': |
|
|
|
parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE) |
|
if self.dataset == 'train' or self.dataset == 'trainval': |
|
sf = self.scale_factor |
|
rf = self.rotation_factor |
|
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) |
|
r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0 |
|
|
|
if random.random() <= self.flip_prob: |
|
im = im[:, ::-1, :] |
|
parsing_anno = parsing_anno[:, ::-1] |
|
person_center[0] = im.shape[1] - person_center[0] - 1 |
|
right_idx = [15, 17, 19] |
|
left_idx = [14, 16, 18] |
|
for i in range(0, 3): |
|
right_pos = np.where(parsing_anno == right_idx[i]) |
|
left_pos = np.where(parsing_anno == left_idx[i]) |
|
parsing_anno[right_pos[0], right_pos[1]] = left_idx[i] |
|
parsing_anno[left_pos[0], left_pos[1]] = right_idx[i] |
|
|
|
trans = get_affine_transform(person_center, s, r, self.crop_size) |
|
input = cv2.warpAffine( |
|
im, |
|
trans, |
|
(int(self.crop_size[1]), int(self.crop_size[0])), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(0, 0, 0)) |
|
|
|
if self.transform: |
|
input = self.transform(input) |
|
|
|
meta = { |
|
'name': train_item, |
|
'center': person_center, |
|
'height': h, |
|
'width': w, |
|
'scale': s, |
|
'rotation': r |
|
} |
|
|
|
if self.dataset == 'val' or self.dataset == 'test': |
|
return input, meta |
|
else: |
|
label_parsing = cv2.warpAffine( |
|
parsing_anno, |
|
trans, |
|
(int(self.crop_size[1]), int(self.crop_size[0])), |
|
flags=cv2.INTER_NEAREST, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(255)) |
|
|
|
label_parsing = torch.from_numpy(label_parsing) |
|
|
|
return input, label_parsing, meta |
|
|
|
|
|
class LIPDataValSet(data.Dataset): |
|
def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False): |
|
self.root = root |
|
self.crop_size = crop_size |
|
self.transform = transform |
|
self.flip = flip |
|
self.dataset = dataset |
|
self.root = root |
|
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0] |
|
self.crop_size = np.asarray(crop_size) |
|
|
|
list_path = os.path.join(self.root, self.dataset + '_id.txt') |
|
val_list = [i_id.strip() for i_id in open(list_path)] |
|
|
|
self.val_list = val_list |
|
self.number_samples = len(self.val_list) |
|
|
|
def __len__(self): |
|
return len(self.val_list) |
|
|
|
def _box2cs(self, box): |
|
x, y, w, h = box[:4] |
|
return self._xywh2cs(x, y, w, h) |
|
|
|
def _xywh2cs(self, x, y, w, h): |
|
center = np.zeros((2), dtype=np.float32) |
|
center[0] = x + w * 0.5 |
|
center[1] = y + h * 0.5 |
|
if w > self.aspect_ratio * h: |
|
h = w * 1.0 / self.aspect_ratio |
|
elif w < self.aspect_ratio * h: |
|
w = h * self.aspect_ratio |
|
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32) |
|
|
|
return center, scale |
|
|
|
def __getitem__(self, index): |
|
val_item = self.val_list[index] |
|
|
|
im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg') |
|
im = cv2.imread(im_path, cv2.IMREAD_COLOR) |
|
h, w, _ = im.shape |
|
|
|
person_center, s = self._box2cs([0, 0, w - 1, h - 1]) |
|
r = 0 |
|
trans = get_affine_transform(person_center, s, r, self.crop_size) |
|
input = cv2.warpAffine( |
|
im, |
|
trans, |
|
(int(self.crop_size[1]), int(self.crop_size[0])), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(0, 0, 0)) |
|
input = self.transform(input) |
|
flip_input = input.flip(dims=[-1]) |
|
if self.flip: |
|
batch_input_im = torch.stack([input, flip_input]) |
|
else: |
|
batch_input_im = input |
|
|
|
meta = { |
|
'name': val_item, |
|
'center': person_center, |
|
'height': h, |
|
'width': w, |
|
'scale': s, |
|
'rotation': r |
|
} |
|
|
|
return batch_input_im, meta |
|
|