|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
def generate_edge_tensor(label, edge_width=3): |
|
label = label.type(torch.cuda.FloatTensor) |
|
if len(label.shape) == 2: |
|
label = label.unsqueeze(0) |
|
n, h, w = label.shape |
|
edge = torch.zeros(label.shape, dtype=torch.float).cuda() |
|
|
|
edge_right = edge[:, 1:h, :] |
|
edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255) |
|
& (label[:, :h - 1, :] != 255)] = 1 |
|
|
|
|
|
edge_up = edge[:, :, :w - 1] |
|
edge_up[(label[:, :, :w - 1] != label[:, :, 1:w]) |
|
& (label[:, :, :w - 1] != 255) |
|
& (label[:, :, 1:w] != 255)] = 1 |
|
|
|
|
|
edge_upright = edge[:, :h - 1, :w - 1] |
|
edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w]) |
|
& (label[:, :h - 1, :w - 1] != 255) |
|
& (label[:, 1:h, 1:w] != 255)] = 1 |
|
|
|
|
|
edge_bottomright = edge[:, :h - 1, 1:w] |
|
edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1]) |
|
& (label[:, :h - 1, 1:w] != 255) |
|
& (label[:, 1:h, :w - 1] != 255)] = 1 |
|
|
|
kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda() |
|
with torch.no_grad(): |
|
edge = edge.unsqueeze(1) |
|
edge = F.conv2d(edge, kernel, stride=1, padding=1) |
|
edge[edge!=0] = 1 |
|
edge = edge.squeeze() |
|
return edge |
|
|