|
import cv2 |
|
import os |
|
import numpy as np |
|
|
|
from collections import OrderedDict |
|
from PIL import Image as PILImage |
|
from utils.transforms import transform_parsing |
|
|
|
LABELS = ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', \ |
|
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', |
|
'Right-leg', 'Left-shoe', 'Right-shoe'] |
|
|
|
|
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
|
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
def get_confusion_matrix(gt_label, pred_label, num_classes): |
|
""" |
|
Calcute the confusion matrix by given label and pred |
|
:param gt_label: the ground truth label |
|
:param pred_label: the pred label |
|
:param num_classes: the nunber of class |
|
:return: the confusion matrix |
|
""" |
|
index = (gt_label * num_classes + pred_label).astype('int32') |
|
label_count = np.bincount(index) |
|
confusion_matrix = np.zeros((num_classes, num_classes)) |
|
|
|
for i_label in range(num_classes): |
|
for i_pred_label in range(num_classes): |
|
cur_index = i_label * num_classes + i_pred_label |
|
if cur_index < len(label_count): |
|
confusion_matrix[i_label, i_pred_label] = label_count[cur_index] |
|
|
|
return confusion_matrix |
|
|
|
|
|
def compute_mean_ioU(preds, scales, centers, num_classes, datadir, input_size=[473, 473], dataset='val'): |
|
val_file = os.path.join(datadir, dataset + '_id.txt') |
|
val_id = [i_id.strip() for i_id in open(val_file)] |
|
|
|
confusion_matrix = np.zeros((num_classes, num_classes)) |
|
|
|
for i, pred_out in enumerate(preds): |
|
im_name = val_id[i] |
|
gt_path = os.path.join(datadir, dataset + '_segmentations', im_name + '.png') |
|
gt = np.array(PILImage.open(gt_path)) |
|
h, w = gt.shape |
|
s = scales[i] |
|
c = centers[i] |
|
pred = transform_parsing(pred_out, c, s, w, h, input_size) |
|
|
|
gt = np.asarray(gt, dtype=np.int32) |
|
pred = np.asarray(pred, dtype=np.int32) |
|
|
|
ignore_index = gt != 255 |
|
|
|
gt = gt[ignore_index] |
|
pred = pred[ignore_index] |
|
|
|
confusion_matrix += get_confusion_matrix(gt, pred, num_classes) |
|
|
|
pos = confusion_matrix.sum(1) |
|
res = confusion_matrix.sum(0) |
|
tp = np.diag(confusion_matrix) |
|
|
|
pixel_accuracy = (tp.sum() / pos.sum()) * 100 |
|
mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100 |
|
IoU_array = (tp / np.maximum(1.0, pos + res - tp)) |
|
IoU_array = IoU_array * 100 |
|
mean_IoU = IoU_array.mean() |
|
print('Pixel accuracy: %f \n' % pixel_accuracy) |
|
print('Mean accuracy: %f \n' % mean_accuracy) |
|
print('Mean IU: %f \n' % mean_IoU) |
|
name_value = [] |
|
|
|
for i, (label, iou) in enumerate(zip(LABELS, IoU_array)): |
|
name_value.append((label, iou)) |
|
|
|
name_value.append(('Pixel accuracy', pixel_accuracy)) |
|
name_value.append(('Mean accuracy', mean_accuracy)) |
|
name_value.append(('Mean IU', mean_IoU)) |
|
name_value = OrderedDict(name_value) |
|
return name_value |
|
|
|
|
|
def compute_mean_ioU_file(preds_dir, num_classes, datadir, dataset='val'): |
|
list_path = os.path.join(datadir, dataset + '_id.txt') |
|
val_id = [i_id.strip() for i_id in open(list_path)] |
|
|
|
confusion_matrix = np.zeros((num_classes, num_classes)) |
|
|
|
for i, im_name in enumerate(val_id): |
|
gt_path = os.path.join(datadir, 'segmentations', im_name + '.png') |
|
gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) |
|
|
|
pred_path = os.path.join(preds_dir, im_name + '.png') |
|
pred = np.asarray(PILImage.open(pred_path)) |
|
|
|
gt = np.asarray(gt, dtype=np.int32) |
|
pred = np.asarray(pred, dtype=np.int32) |
|
|
|
ignore_index = gt != 255 |
|
|
|
gt = gt[ignore_index] |
|
pred = pred[ignore_index] |
|
|
|
confusion_matrix += get_confusion_matrix(gt, pred, num_classes) |
|
|
|
pos = confusion_matrix.sum(1) |
|
res = confusion_matrix.sum(0) |
|
tp = np.diag(confusion_matrix) |
|
|
|
pixel_accuracy = (tp.sum() / pos.sum()) * 100 |
|
mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100 |
|
IoU_array = (tp / np.maximum(1.0, pos + res - tp)) |
|
IoU_array = IoU_array * 100 |
|
mean_IoU = IoU_array.mean() |
|
print('Pixel accuracy: %f \n' % pixel_accuracy) |
|
print('Mean accuracy: %f \n' % mean_accuracy) |
|
print('Mean IU: %f \n' % mean_IoU) |
|
name_value = [] |
|
|
|
for i, (label, iou) in enumerate(zip(LABELS, IoU_array)): |
|
name_value.append((label, iou)) |
|
|
|
name_value.append(('Pixel accuracy', pixel_accuracy)) |
|
name_value.append(('Mean accuracy', mean_accuracy)) |
|
name_value.append(('Mean IU', mean_IoU)) |
|
name_value = OrderedDict(name_value) |
|
return name_value |
|
|