|
|
|
import contextlib |
|
import io |
|
import logging |
|
import os |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Iterable, List, Optional |
|
from fvcore.common.timer import Timer |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.structures import BoxMode |
|
from detectron2.utils.file_io import PathManager |
|
|
|
from ..utils import maybe_prepend_base_path |
|
|
|
DENSEPOSE_MASK_KEY = "dp_masks" |
|
DENSEPOSE_IUV_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_I", "dp_U", "dp_V"] |
|
DENSEPOSE_CSE_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_vertex", "ref_model"] |
|
DENSEPOSE_ALL_POSSIBLE_KEYS = set( |
|
DENSEPOSE_IUV_KEYS_WITHOUT_MASK + DENSEPOSE_CSE_KEYS_WITHOUT_MASK + [DENSEPOSE_MASK_KEY] |
|
) |
|
DENSEPOSE_METADATA_URL_PREFIX = "https://dl.fbaipublicfiles.com/densepose/data/" |
|
|
|
|
|
@dataclass |
|
class CocoDatasetInfo: |
|
name: str |
|
images_root: str |
|
annotations_fpath: str |
|
|
|
|
|
DATASETS = [ |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_train", |
|
images_root="coco/train2014", |
|
annotations_fpath="coco/annotations/densepose_train2014.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_minival", |
|
images_root="coco/val2014", |
|
annotations_fpath="coco/annotations/densepose_minival2014.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_minival_100", |
|
images_root="coco/val2014", |
|
annotations_fpath="coco/annotations/densepose_minival2014_100.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_valminusminival", |
|
images_root="coco/val2014", |
|
annotations_fpath="coco/annotations/densepose_valminusminival2014.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_train_cse", |
|
images_root="coco/train2014", |
|
annotations_fpath="coco_cse/densepose_train2014_cse.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_minival_cse", |
|
images_root="coco/val2014", |
|
annotations_fpath="coco_cse/densepose_minival2014_cse.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_minival_100_cse", |
|
images_root="coco/val2014", |
|
annotations_fpath="coco_cse/densepose_minival2014_100_cse.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_coco_2014_valminusminival_cse", |
|
images_root="coco/val2014", |
|
annotations_fpath="coco_cse/densepose_valminusminival2014_cse.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_chimps", |
|
images_root="densepose_chimps/images", |
|
annotations_fpath="densepose_chimps/densepose_chimps_densepose.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_chimps_cse_train", |
|
images_root="densepose_chimps/images", |
|
annotations_fpath="densepose_chimps/densepose_chimps_cse_train.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_chimps_cse_val", |
|
images_root="densepose_chimps/images", |
|
annotations_fpath="densepose_chimps/densepose_chimps_cse_val.json", |
|
), |
|
CocoDatasetInfo( |
|
name="posetrack2017_train", |
|
images_root="posetrack2017/posetrack_data_2017", |
|
annotations_fpath="posetrack2017/densepose_posetrack_train2017.json", |
|
), |
|
CocoDatasetInfo( |
|
name="posetrack2017_val", |
|
images_root="posetrack2017/posetrack_data_2017", |
|
annotations_fpath="posetrack2017/densepose_posetrack_val2017.json", |
|
), |
|
CocoDatasetInfo( |
|
name="lvis_v05_train", |
|
images_root="coco/train2017", |
|
annotations_fpath="lvis/lvis_v0.5_plus_dp_train.json", |
|
), |
|
CocoDatasetInfo( |
|
name="lvis_v05_val", |
|
images_root="coco/val2017", |
|
annotations_fpath="lvis/lvis_v0.5_plus_dp_val.json", |
|
), |
|
] |
|
|
|
|
|
BASE_DATASETS = [ |
|
CocoDatasetInfo( |
|
name="base_coco_2017_train", |
|
images_root="coco/train2017", |
|
annotations_fpath="coco/annotations/instances_train2017.json", |
|
), |
|
CocoDatasetInfo( |
|
name="base_coco_2017_val", |
|
images_root="coco/val2017", |
|
annotations_fpath="coco/annotations/instances_val2017.json", |
|
), |
|
CocoDatasetInfo( |
|
name="base_coco_2017_val_100", |
|
images_root="coco/val2017", |
|
annotations_fpath="coco/annotations/instances_val2017_100.json", |
|
), |
|
] |
|
|
|
|
|
def get_metadata(base_path: Optional[str]) -> Dict[str, Any]: |
|
""" |
|
Returns metadata associated with COCO DensePose datasets |
|
|
|
Args: |
|
base_path: Optional[str] |
|
Base path used to load metadata from |
|
|
|
Returns: |
|
Dict[str, Any] |
|
Metadata in the form of a dictionary |
|
""" |
|
meta = { |
|
"densepose_transform_src": maybe_prepend_base_path(base_path, "UV_symmetry_transforms.mat"), |
|
"densepose_smpl_subdiv": maybe_prepend_base_path(base_path, "SMPL_subdiv.mat"), |
|
"densepose_smpl_subdiv_transform": maybe_prepend_base_path( |
|
base_path, |
|
"SMPL_SUBDIV_TRANSFORM.mat", |
|
), |
|
} |
|
return meta |
|
|
|
|
|
def _load_coco_annotations(json_file: str): |
|
""" |
|
Load COCO annotations from a JSON file |
|
|
|
Args: |
|
json_file: str |
|
Path to the file to load annotations from |
|
Returns: |
|
Instance of `pycocotools.coco.COCO` that provides access to annotations |
|
data |
|
""" |
|
from pycocotools.coco import COCO |
|
|
|
logger = logging.getLogger(__name__) |
|
timer = Timer() |
|
with contextlib.redirect_stdout(io.StringIO()): |
|
coco_api = COCO(json_file) |
|
if timer.seconds() > 1: |
|
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) |
|
return coco_api |
|
|
|
|
|
def _add_categories_metadata(dataset_name: str, categories: List[Dict[str, Any]]): |
|
meta = MetadataCatalog.get(dataset_name) |
|
meta.categories = {c["id"]: c["name"] for c in categories} |
|
logger = logging.getLogger(__name__) |
|
logger.info("Dataset {} categories: {}".format(dataset_name, meta.categories)) |
|
|
|
|
|
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]): |
|
if "minival" in json_file: |
|
|
|
|
|
|
|
return |
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] |
|
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format( |
|
json_file |
|
) |
|
|
|
|
|
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]): |
|
if "bbox" not in ann_dict: |
|
return |
|
obj["bbox"] = ann_dict["bbox"] |
|
obj["bbox_mode"] = BoxMode.XYWH_ABS |
|
|
|
|
|
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]): |
|
if "segmentation" not in ann_dict: |
|
return |
|
segm = ann_dict["segmentation"] |
|
if not isinstance(segm, dict): |
|
|
|
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] |
|
if len(segm) == 0: |
|
return |
|
obj["segmentation"] = segm |
|
|
|
|
|
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]): |
|
if "keypoints" not in ann_dict: |
|
return |
|
keypts = ann_dict["keypoints"] |
|
for idx, v in enumerate(keypts): |
|
if idx % 3 != 2: |
|
|
|
|
|
|
|
|
|
keypts[idx] = v + 0.5 |
|
obj["keypoints"] = keypts |
|
|
|
|
|
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]): |
|
for key in DENSEPOSE_ALL_POSSIBLE_KEYS: |
|
if key in ann_dict: |
|
obj[key] = ann_dict[key] |
|
|
|
|
|
def _combine_images_with_annotations( |
|
dataset_name: str, |
|
image_root: str, |
|
img_datas: Iterable[Dict[str, Any]], |
|
ann_datas: Iterable[Iterable[Dict[str, Any]]], |
|
): |
|
|
|
ann_keys = ["iscrowd", "category_id"] |
|
dataset_dicts = [] |
|
contains_video_frame_info = False |
|
|
|
for img_dict, ann_dicts in zip(img_datas, ann_datas): |
|
record = {} |
|
record["file_name"] = os.path.join(image_root, img_dict["file_name"]) |
|
record["height"] = img_dict["height"] |
|
record["width"] = img_dict["width"] |
|
record["image_id"] = img_dict["id"] |
|
record["dataset"] = dataset_name |
|
if "frame_id" in img_dict: |
|
record["frame_id"] = img_dict["frame_id"] |
|
record["video_id"] = img_dict.get("vid_id", None) |
|
contains_video_frame_info = True |
|
objs = [] |
|
for ann_dict in ann_dicts: |
|
assert ann_dict["image_id"] == record["image_id"] |
|
assert ann_dict.get("ignore", 0) == 0 |
|
obj = {key: ann_dict[key] for key in ann_keys if key in ann_dict} |
|
_maybe_add_bbox(obj, ann_dict) |
|
_maybe_add_segm(obj, ann_dict) |
|
_maybe_add_keypoints(obj, ann_dict) |
|
_maybe_add_densepose(obj, ann_dict) |
|
objs.append(obj) |
|
record["annotations"] = objs |
|
dataset_dicts.append(record) |
|
if contains_video_frame_info: |
|
create_video_frame_mapping(dataset_name, dataset_dicts) |
|
return dataset_dicts |
|
|
|
|
|
def get_contiguous_id_to_category_id_map(metadata): |
|
cat_id_2_cont_id = metadata.thing_dataset_id_to_contiguous_id |
|
cont_id_2_cat_id = {} |
|
for cat_id, cont_id in cat_id_2_cont_id.items(): |
|
if cont_id in cont_id_2_cat_id: |
|
continue |
|
cont_id_2_cat_id[cont_id] = cat_id |
|
return cont_id_2_cat_id |
|
|
|
|
|
def maybe_filter_categories_cocoapi(dataset_name, coco_api): |
|
meta = MetadataCatalog.get(dataset_name) |
|
cont_id_2_cat_id = get_contiguous_id_to_category_id_map(meta) |
|
cat_id_2_cont_id = meta.thing_dataset_id_to_contiguous_id |
|
|
|
cats = [] |
|
for cat in coco_api.dataset["categories"]: |
|
cat_id = cat["id"] |
|
if cat_id not in cat_id_2_cont_id: |
|
continue |
|
cont_id = cat_id_2_cont_id[cat_id] |
|
if (cont_id in cont_id_2_cat_id) and (cont_id_2_cat_id[cont_id] == cat_id): |
|
cats.append(cat) |
|
coco_api.dataset["categories"] = cats |
|
|
|
|
|
anns = [] |
|
for ann in coco_api.dataset["annotations"]: |
|
cat_id = ann["category_id"] |
|
if cat_id not in cat_id_2_cont_id: |
|
continue |
|
cont_id = cat_id_2_cont_id[cat_id] |
|
ann["category_id"] = cont_id_2_cat_id[cont_id] |
|
anns.append(ann) |
|
coco_api.dataset["annotations"] = anns |
|
|
|
coco_api.createIndex() |
|
|
|
|
|
def maybe_filter_and_map_categories_cocoapi(dataset_name, coco_api): |
|
meta = MetadataCatalog.get(dataset_name) |
|
category_id_map = meta.thing_dataset_id_to_contiguous_id |
|
|
|
cats = [] |
|
for cat in coco_api.dataset["categories"]: |
|
cat_id = cat["id"] |
|
if cat_id not in category_id_map: |
|
continue |
|
cat["id"] = category_id_map[cat_id] |
|
cats.append(cat) |
|
coco_api.dataset["categories"] = cats |
|
|
|
anns = [] |
|
for ann in coco_api.dataset["annotations"]: |
|
cat_id = ann["category_id"] |
|
if cat_id not in category_id_map: |
|
continue |
|
ann["category_id"] = category_id_map[cat_id] |
|
anns.append(ann) |
|
coco_api.dataset["annotations"] = anns |
|
|
|
coco_api.createIndex() |
|
|
|
|
|
def create_video_frame_mapping(dataset_name, dataset_dicts): |
|
mapping = defaultdict(dict) |
|
for d in dataset_dicts: |
|
video_id = d.get("video_id") |
|
if video_id is None: |
|
continue |
|
mapping[video_id].update({d["frame_id"]: d["file_name"]}) |
|
MetadataCatalog.get(dataset_name).set(video_frame_mapping=mapping) |
|
|
|
|
|
def load_coco_json(annotations_json_file: str, image_root: str, dataset_name: str): |
|
""" |
|
Loads a JSON file with annotations in COCO instances format. |
|
Replaces `detectron2.data.datasets.coco.load_coco_json` to handle metadata |
|
in a more flexible way. Postpones category mapping to a later stage to be |
|
able to combine several datasets with different (but coherent) sets of |
|
categories. |
|
|
|
Args: |
|
|
|
annotations_json_file: str |
|
Path to the JSON file with annotations in COCO instances format. |
|
image_root: str |
|
directory that contains all the images |
|
dataset_name: str |
|
the name that identifies a dataset, e.g. "densepose_coco_2014_train" |
|
extra_annotation_keys: Optional[List[str]] |
|
If provided, these keys are used to extract additional data from |
|
the annotations. |
|
""" |
|
coco_api = _load_coco_annotations(PathManager.get_local_path(annotations_json_file)) |
|
_add_categories_metadata(dataset_name, coco_api.loadCats(coco_api.getCatIds())) |
|
|
|
img_ids = sorted(coco_api.imgs.keys()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imgs = coco_api.loadImgs(img_ids) |
|
logger = logging.getLogger(__name__) |
|
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), annotations_json_file)) |
|
|
|
|
|
|
|
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids] |
|
_verify_annotations_have_unique_ids(annotations_json_file, anns) |
|
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns) |
|
return dataset_records |
|
|
|
|
|
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None): |
|
""" |
|
Registers provided COCO DensePose dataset |
|
|
|
Args: |
|
dataset_data: CocoDatasetInfo |
|
Dataset data |
|
datasets_root: Optional[str] |
|
Datasets root folder (default: None) |
|
""" |
|
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath) |
|
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root) |
|
|
|
def load_annotations(): |
|
return load_coco_json( |
|
annotations_json_file=annotations_fpath, |
|
image_root=images_root, |
|
dataset_name=dataset_data.name, |
|
) |
|
|
|
DatasetCatalog.register(dataset_data.name, load_annotations) |
|
MetadataCatalog.get(dataset_data.name).set( |
|
json_file=annotations_fpath, |
|
image_root=images_root, |
|
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX) |
|
) |
|
|
|
|
|
def register_datasets( |
|
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None |
|
): |
|
""" |
|
Registers provided COCO DensePose datasets |
|
|
|
Args: |
|
datasets_data: Iterable[CocoDatasetInfo] |
|
An iterable of dataset datas |
|
datasets_root: Optional[str] |
|
Datasets root folder (default: None) |
|
""" |
|
for dataset_data in datasets_data: |
|
register_dataset(dataset_data, datasets_root) |
|
|