|
|
|
import logging |
|
import os |
|
from typing import Any, Dict, Iterable, List, Optional |
|
from fvcore.common.timer import Timer |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.data.datasets.lvis import get_lvis_instances_meta |
|
from detectron2.structures import BoxMode |
|
from detectron2.utils.file_io import PathManager |
|
|
|
from ..utils import maybe_prepend_base_path |
|
from .coco import ( |
|
DENSEPOSE_ALL_POSSIBLE_KEYS, |
|
DENSEPOSE_METADATA_URL_PREFIX, |
|
CocoDatasetInfo, |
|
get_metadata, |
|
) |
|
|
|
DATASETS = [ |
|
CocoDatasetInfo( |
|
name="densepose_lvis_v1_ds1_train_v1", |
|
images_root="coco_", |
|
annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_lvis_v1_ds1_val_v1", |
|
images_root="coco_", |
|
annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_lvis_v1_ds2_train_v1", |
|
images_root="coco_", |
|
annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_lvis_v1_ds2_val_v1", |
|
images_root="coco_", |
|
annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json", |
|
), |
|
CocoDatasetInfo( |
|
name="densepose_lvis_v1_ds1_val_animals_100", |
|
images_root="coco_", |
|
annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json", |
|
), |
|
] |
|
|
|
|
|
def _load_lvis_annotations(json_file: str): |
|
""" |
|
Load COCO annotations from a JSON file |
|
|
|
Args: |
|
json_file: str |
|
Path to the file to load annotations from |
|
Returns: |
|
Instance of `pycocotools.coco.COCO` that provides access to annotations |
|
data |
|
""" |
|
from lvis import LVIS |
|
|
|
json_file = PathManager.get_local_path(json_file) |
|
logger = logging.getLogger(__name__) |
|
timer = Timer() |
|
lvis_api = LVIS(json_file) |
|
if timer.seconds() > 1: |
|
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) |
|
return lvis_api |
|
|
|
|
|
def _add_categories_metadata(dataset_name: str) -> None: |
|
metadict = get_lvis_instances_meta(dataset_name) |
|
categories = metadict["thing_classes"] |
|
metadata = MetadataCatalog.get(dataset_name) |
|
metadata.categories = {i + 1: categories[i] for i in range(len(categories))} |
|
logger = logging.getLogger(__name__) |
|
logger.info(f"Dataset {dataset_name} has {len(categories)} categories") |
|
|
|
|
|
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None: |
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] |
|
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format( |
|
json_file |
|
) |
|
|
|
|
|
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: |
|
if "bbox" not in ann_dict: |
|
return |
|
obj["bbox"] = ann_dict["bbox"] |
|
obj["bbox_mode"] = BoxMode.XYWH_ABS |
|
|
|
|
|
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: |
|
if "segmentation" not in ann_dict: |
|
return |
|
segm = ann_dict["segmentation"] |
|
if not isinstance(segm, dict): |
|
|
|
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] |
|
if len(segm) == 0: |
|
return |
|
obj["segmentation"] = segm |
|
|
|
|
|
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: |
|
if "keypoints" not in ann_dict: |
|
return |
|
keypts = ann_dict["keypoints"] |
|
for idx, v in enumerate(keypts): |
|
if idx % 3 != 2: |
|
|
|
|
|
|
|
|
|
keypts[idx] = v + 0.5 |
|
obj["keypoints"] = keypts |
|
|
|
|
|
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: |
|
for key in DENSEPOSE_ALL_POSSIBLE_KEYS: |
|
if key in ann_dict: |
|
obj[key] = ann_dict[key] |
|
|
|
|
|
def _combine_images_with_annotations( |
|
dataset_name: str, |
|
image_root: str, |
|
img_datas: Iterable[Dict[str, Any]], |
|
ann_datas: Iterable[Iterable[Dict[str, Any]]], |
|
): |
|
|
|
dataset_dicts = [] |
|
|
|
def get_file_name(img_root, img_dict): |
|
|
|
|
|
|
|
split_folder, file_name = img_dict["coco_url"].split("/")[-2:] |
|
return os.path.join(img_root + split_folder, file_name) |
|
|
|
for img_dict, ann_dicts in zip(img_datas, ann_datas): |
|
record = {} |
|
record["file_name"] = get_file_name(image_root, img_dict) |
|
record["height"] = img_dict["height"] |
|
record["width"] = img_dict["width"] |
|
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", []) |
|
record["neg_category_ids"] = img_dict.get("neg_category_ids", []) |
|
record["image_id"] = img_dict["id"] |
|
record["dataset"] = dataset_name |
|
|
|
objs = [] |
|
for ann_dict in ann_dicts: |
|
assert ann_dict["image_id"] == record["image_id"] |
|
obj = {} |
|
_maybe_add_bbox(obj, ann_dict) |
|
obj["iscrowd"] = ann_dict.get("iscrowd", 0) |
|
obj["category_id"] = ann_dict["category_id"] |
|
_maybe_add_segm(obj, ann_dict) |
|
_maybe_add_keypoints(obj, ann_dict) |
|
_maybe_add_densepose(obj, ann_dict) |
|
objs.append(obj) |
|
record["annotations"] = objs |
|
dataset_dicts.append(record) |
|
return dataset_dicts |
|
|
|
|
|
def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str): |
|
""" |
|
Loads a JSON file with annotations in LVIS instances format. |
|
Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata |
|
in a more flexible way. Postpones category mapping to a later stage to be |
|
able to combine several datasets with different (but coherent) sets of |
|
categories. |
|
|
|
Args: |
|
|
|
annotations_json_file: str |
|
Path to the JSON file with annotations in COCO instances format. |
|
image_root: str |
|
directory that contains all the images |
|
dataset_name: str |
|
the name that identifies a dataset, e.g. "densepose_coco_2014_train" |
|
extra_annotation_keys: Optional[List[str]] |
|
If provided, these keys are used to extract additional data from |
|
the annotations. |
|
""" |
|
lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file)) |
|
|
|
_add_categories_metadata(dataset_name) |
|
|
|
|
|
img_ids = sorted(lvis_api.imgs.keys()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imgs = lvis_api.load_imgs(img_ids) |
|
logger = logging.getLogger(__name__) |
|
logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file)) |
|
|
|
|
|
|
|
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] |
|
|
|
_verify_annotations_have_unique_ids(annotations_json_file, anns) |
|
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns) |
|
return dataset_records |
|
|
|
|
|
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None: |
|
""" |
|
Registers provided LVIS DensePose dataset |
|
|
|
Args: |
|
dataset_data: CocoDatasetInfo |
|
Dataset data |
|
datasets_root: Optional[str] |
|
Datasets root folder (default: None) |
|
""" |
|
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath) |
|
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root) |
|
|
|
def load_annotations(): |
|
return load_lvis_json( |
|
annotations_json_file=annotations_fpath, |
|
image_root=images_root, |
|
dataset_name=dataset_data.name, |
|
) |
|
|
|
DatasetCatalog.register(dataset_data.name, load_annotations) |
|
MetadataCatalog.get(dataset_data.name).set( |
|
json_file=annotations_fpath, |
|
image_root=images_root, |
|
evaluator_type="lvis", |
|
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX), |
|
) |
|
|
|
|
|
def register_datasets( |
|
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None |
|
) -> None: |
|
""" |
|
Registers provided LVIS DensePose datasets |
|
|
|
Args: |
|
datasets_data: Iterable[CocoDatasetInfo] |
|
An iterable of dataset datas |
|
datasets_root: Optional[str] |
|
Datasets root folder (default: None) |
|
""" |
|
for dataset_data in datasets_data: |
|
register_dataset(dataset_data, datasets_root) |
|
|