|
|
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import CfgNode |
|
from detectron2.layers import Conv2d |
|
|
|
from ..utils import initialize_module_params |
|
from .registry import ROI_DENSEPOSE_HEAD_REGISTRY |
|
|
|
|
|
@ROI_DENSEPOSE_HEAD_REGISTRY.register() |
|
class DensePoseV1ConvXHead(nn.Module): |
|
""" |
|
Fully convolutional DensePose head. |
|
""" |
|
|
|
def __init__(self, cfg: CfgNode, input_channels: int): |
|
""" |
|
Initialize DensePose fully convolutional head |
|
|
|
Args: |
|
cfg (CfgNode): configuration options |
|
input_channels (int): number of input channels |
|
""" |
|
super(DensePoseV1ConvXHead, self).__init__() |
|
|
|
hidden_dim = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_DIM |
|
kernel_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_KERNEL |
|
self.n_stacked_convs = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_STACKED_CONVS |
|
|
|
pad_size = kernel_size // 2 |
|
n_channels = input_channels |
|
for i in range(self.n_stacked_convs): |
|
layer = Conv2d(n_channels, hidden_dim, kernel_size, stride=1, padding=pad_size) |
|
layer_name = self._get_layer_name(i) |
|
self.add_module(layer_name, layer) |
|
n_channels = hidden_dim |
|
self.n_out_channels = n_channels |
|
initialize_module_params(self) |
|
|
|
def forward(self, features: torch.Tensor): |
|
""" |
|
Apply DensePose fully convolutional head to the input features |
|
|
|
Args: |
|
features (tensor): input features |
|
Result: |
|
A tensor of DensePose head outputs |
|
""" |
|
x = features |
|
output = x |
|
for i in range(self.n_stacked_convs): |
|
layer_name = self._get_layer_name(i) |
|
x = getattr(self, layer_name)(x) |
|
x = F.relu(x) |
|
output = x |
|
return output |
|
|
|
def _get_layer_name(self, i: int): |
|
layer_name = "body_conv_fcn{}".format(i + 1) |
|
return layer_name |
|
|