|
|
|
|
|
""" |
|
Implement many useful :class:`Augmentation`. |
|
""" |
|
import numpy as np |
|
import sys |
|
from numpy import random |
|
from typing import Tuple |
|
import torch |
|
from fvcore.transforms.transform import ( |
|
BlendTransform, |
|
CropTransform, |
|
HFlipTransform, |
|
NoOpTransform, |
|
PadTransform, |
|
Transform, |
|
TransformList, |
|
VFlipTransform, |
|
) |
|
from PIL import Image |
|
|
|
from detectron2.structures import Boxes, pairwise_iou |
|
|
|
from .augmentation import Augmentation, _transform_to_aug |
|
from .transform import ExtentTransform, ResizeTransform, RotationTransform |
|
|
|
__all__ = [ |
|
"FixedSizeCrop", |
|
"RandomApply", |
|
"RandomBrightness", |
|
"RandomContrast", |
|
"RandomCrop", |
|
"RandomExtent", |
|
"RandomFlip", |
|
"RandomSaturation", |
|
"RandomLighting", |
|
"RandomRotation", |
|
"Resize", |
|
"ResizeScale", |
|
"ResizeShortestEdge", |
|
"RandomCrop_CategoryAreaConstraint", |
|
"RandomResize", |
|
"MinIoURandomCrop", |
|
] |
|
|
|
|
|
class RandomApply(Augmentation): |
|
""" |
|
Randomly apply an augmentation with a given probability. |
|
""" |
|
|
|
def __init__(self, tfm_or_aug, prob=0.5): |
|
""" |
|
Args: |
|
tfm_or_aug (Transform, Augmentation): the transform or augmentation |
|
to be applied. It can either be a `Transform` or `Augmentation` |
|
instance. |
|
prob (float): probability between 0.0 and 1.0 that |
|
the wrapper transformation is applied |
|
""" |
|
super().__init__() |
|
self.aug = _transform_to_aug(tfm_or_aug) |
|
assert 0.0 <= prob <= 1.0, f"Probablity must be between 0.0 and 1.0 (given: {prob})" |
|
self.prob = prob |
|
|
|
def get_transform(self, *args): |
|
do = self._rand_range() < self.prob |
|
if do: |
|
return self.aug.get_transform(*args) |
|
else: |
|
return NoOpTransform() |
|
|
|
def __call__(self, aug_input): |
|
do = self._rand_range() < self.prob |
|
if do: |
|
return self.aug(aug_input) |
|
else: |
|
return NoOpTransform() |
|
|
|
|
|
class RandomFlip(Augmentation): |
|
""" |
|
Flip the image horizontally or vertically with the given probability. |
|
""" |
|
|
|
def __init__(self, prob=0.5, *, horizontal=True, vertical=False): |
|
""" |
|
Args: |
|
prob (float): probability of flip. |
|
horizontal (boolean): whether to apply horizontal flipping |
|
vertical (boolean): whether to apply vertical flipping |
|
""" |
|
super().__init__() |
|
|
|
if horizontal and vertical: |
|
raise ValueError("Cannot do both horiz and vert. Please use two Flip instead.") |
|
if not horizontal and not vertical: |
|
raise ValueError("At least one of horiz or vert has to be True!") |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
h, w = image.shape[:2] |
|
do = self._rand_range() < self.prob |
|
if do: |
|
if self.horizontal: |
|
return HFlipTransform(w) |
|
elif self.vertical: |
|
return VFlipTransform(h) |
|
else: |
|
return NoOpTransform() |
|
|
|
|
|
class Resize(Augmentation): |
|
"""Resize image to a fixed target size""" |
|
|
|
def __init__(self, shape, interp=Image.BILINEAR): |
|
""" |
|
Args: |
|
shape: (h, w) tuple or a int |
|
interp: PIL interpolation method |
|
""" |
|
if isinstance(shape, int): |
|
shape = (shape, shape) |
|
shape = tuple(shape) |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
return ResizeTransform( |
|
image.shape[0], image.shape[1], self.shape[0], self.shape[1], self.interp |
|
) |
|
|
|
|
|
class ResizeShortestEdge(Augmentation): |
|
""" |
|
Resize the image while keeping the aspect ratio unchanged. |
|
It attempts to scale the shorter edge to the given `short_edge_length`, |
|
as long as the longer edge does not exceed `max_size`. |
|
If `max_size` is reached, then downscale so that the longer edge does not exceed max_size. |
|
""" |
|
|
|
@torch.jit.unused |
|
def __init__( |
|
self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR |
|
): |
|
""" |
|
Args: |
|
short_edge_length (list[int]): If ``sample_style=="range"``, |
|
a [min, max] interval from which to sample the shortest edge length. |
|
If ``sample_style=="choice"``, a list of shortest edge lengths to sample from. |
|
max_size (int): maximum allowed longest edge length. |
|
sample_style (str): either "range" or "choice". |
|
""" |
|
super().__init__() |
|
assert sample_style in ["range", "choice"], sample_style |
|
|
|
self.is_range = sample_style == "range" |
|
if isinstance(short_edge_length, int): |
|
short_edge_length = (short_edge_length, short_edge_length) |
|
if self.is_range: |
|
assert len(short_edge_length) == 2, ( |
|
"short_edge_length must be two values using 'range' sample style." |
|
f" Got {short_edge_length}!" |
|
) |
|
self._init(locals()) |
|
|
|
@torch.jit.unused |
|
def get_transform(self, image): |
|
h, w = image.shape[:2] |
|
if self.is_range: |
|
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1) |
|
else: |
|
size = np.random.choice(self.short_edge_length) |
|
if size == 0: |
|
return NoOpTransform() |
|
|
|
newh, neww = ResizeShortestEdge.get_output_shape(h, w, size, self.max_size) |
|
return ResizeTransform(h, w, newh, neww, self.interp) |
|
|
|
@staticmethod |
|
def get_output_shape( |
|
oldh: int, oldw: int, short_edge_length: int, max_size: int |
|
) -> Tuple[int, int]: |
|
""" |
|
Compute the output size given input size and target short edge length. |
|
""" |
|
h, w = oldh, oldw |
|
size = short_edge_length * 1.0 |
|
scale = size / min(h, w) |
|
if h < w: |
|
newh, neww = size, scale * w |
|
else: |
|
newh, neww = scale * h, size |
|
if max(newh, neww) > max_size: |
|
scale = max_size * 1.0 / max(newh, neww) |
|
newh = newh * scale |
|
neww = neww * scale |
|
neww = int(neww + 0.5) |
|
newh = int(newh + 0.5) |
|
return (newh, neww) |
|
|
|
|
|
class ResizeScale(Augmentation): |
|
""" |
|
Takes target size as input and randomly scales the given target size between `min_scale` |
|
and `max_scale`. It then scales the input image such that it fits inside the scaled target |
|
box, keeping the aspect ratio constant. |
|
This implements the resize part of the Google's 'resize_and_crop' data augmentation: |
|
https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/input_utils.py#L127 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
min_scale: float, |
|
max_scale: float, |
|
target_height: int, |
|
target_width: int, |
|
interp: int = Image.BILINEAR, |
|
): |
|
""" |
|
Args: |
|
min_scale: minimum image scale range. |
|
max_scale: maximum image scale range. |
|
target_height: target image height. |
|
target_width: target image width. |
|
interp: image interpolation method. |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
|
|
def _get_resize(self, image: np.ndarray, scale: float) -> Transform: |
|
input_size = image.shape[:2] |
|
|
|
|
|
target_size = (self.target_height, self.target_width) |
|
target_scale_size = np.multiply(target_size, scale) |
|
|
|
|
|
output_scale = np.minimum( |
|
target_scale_size[0] / input_size[0], target_scale_size[1] / input_size[1] |
|
) |
|
output_size = np.round(np.multiply(input_size, output_scale)).astype(int) |
|
|
|
return ResizeTransform( |
|
input_size[0], input_size[1], int(output_size[0]), int(output_size[1]), self.interp |
|
) |
|
|
|
def get_transform(self, image: np.ndarray) -> Transform: |
|
random_scale = np.random.uniform(self.min_scale, self.max_scale) |
|
return self._get_resize(image, random_scale) |
|
|
|
|
|
class RandomRotation(Augmentation): |
|
""" |
|
This method returns a copy of this image, rotated the given |
|
number of degrees counter clockwise around the given center. |
|
""" |
|
|
|
def __init__(self, angle, expand=True, center=None, sample_style="range", interp=None): |
|
""" |
|
Args: |
|
angle (list[float]): If ``sample_style=="range"``, |
|
a [min, max] interval from which to sample the angle (in degrees). |
|
If ``sample_style=="choice"``, a list of angles to sample from |
|
expand (bool): choose if the image should be resized to fit the whole |
|
rotated image (default), or simply cropped |
|
center (list[[float, float]]): If ``sample_style=="range"``, |
|
a [[minx, miny], [maxx, maxy]] relative interval from which to sample the center, |
|
[0, 0] being the top left of the image and [1, 1] the bottom right. |
|
If ``sample_style=="choice"``, a list of centers to sample from |
|
Default: None, which means that the center of rotation is the center of the image |
|
center has no effect if expand=True because it only affects shifting |
|
""" |
|
super().__init__() |
|
assert sample_style in ["range", "choice"], sample_style |
|
self.is_range = sample_style == "range" |
|
if isinstance(angle, (float, int)): |
|
angle = (angle, angle) |
|
if center is not None and isinstance(center[0], (float, int)): |
|
center = (center, center) |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
h, w = image.shape[:2] |
|
center = None |
|
if self.is_range: |
|
angle = np.random.uniform(self.angle[0], self.angle[1]) |
|
if self.center is not None: |
|
center = ( |
|
np.random.uniform(self.center[0][0], self.center[1][0]), |
|
np.random.uniform(self.center[0][1], self.center[1][1]), |
|
) |
|
else: |
|
angle = np.random.choice(self.angle) |
|
if self.center is not None: |
|
center = np.random.choice(self.center) |
|
|
|
if center is not None: |
|
center = (w * center[0], h * center[1]) |
|
|
|
if angle % 360 == 0: |
|
return NoOpTransform() |
|
|
|
return RotationTransform(h, w, angle, expand=self.expand, center=center, interp=self.interp) |
|
|
|
|
|
class FixedSizeCrop(Augmentation): |
|
""" |
|
If `crop_size` is smaller than the input image size, then it uses a random crop of |
|
the crop size. If `crop_size` is larger than the input image size, then it pads |
|
the right and the bottom of the image to the crop size if `pad` is True, otherwise |
|
it returns the smaller image. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
crop_size: Tuple[int], |
|
pad: bool = True, |
|
pad_value: float = 128.0, |
|
seg_pad_value: int = 255, |
|
): |
|
""" |
|
Args: |
|
crop_size: target image (height, width). |
|
pad: if True, will pad images smaller than `crop_size` up to `crop_size` |
|
pad_value: the padding value to the image. |
|
seg_pad_value: the padding value to the segmentation mask. |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
|
|
def _get_crop(self, image: np.ndarray) -> Transform: |
|
|
|
input_size = image.shape[:2] |
|
output_size = self.crop_size |
|
|
|
|
|
max_offset = np.subtract(input_size, output_size) |
|
max_offset = np.maximum(max_offset, 0) |
|
offset = np.multiply(max_offset, np.random.uniform(0.0, 1.0)) |
|
offset = np.round(offset).astype(int) |
|
return CropTransform( |
|
offset[1], offset[0], output_size[1], output_size[0], input_size[1], input_size[0] |
|
) |
|
|
|
def _get_pad(self, image: np.ndarray) -> Transform: |
|
|
|
input_size = image.shape[:2] |
|
output_size = self.crop_size |
|
|
|
|
|
pad_size = np.subtract(output_size, input_size) |
|
pad_size = np.maximum(pad_size, 0) |
|
original_size = np.minimum(input_size, output_size) |
|
return PadTransform( |
|
0, |
|
0, |
|
pad_size[1], |
|
pad_size[0], |
|
original_size[1], |
|
original_size[0], |
|
self.pad_value, |
|
self.seg_pad_value, |
|
) |
|
|
|
def get_transform(self, image: np.ndarray) -> TransformList: |
|
transforms = [self._get_crop(image)] |
|
if self.pad: |
|
transforms.append(self._get_pad(image)) |
|
return TransformList(transforms) |
|
|
|
|
|
class RandomCrop(Augmentation): |
|
""" |
|
Randomly crop a rectangle region out of an image. |
|
""" |
|
|
|
def __init__(self, crop_type: str, crop_size): |
|
""" |
|
Args: |
|
crop_type (str): one of "relative_range", "relative", "absolute", "absolute_range". |
|
crop_size (tuple[float, float]): two floats, explained below. |
|
|
|
- "relative": crop a (H * crop_size[0], W * crop_size[1]) region from an input image of |
|
size (H, W). crop size should be in (0, 1] |
|
- "relative_range": uniformly sample two values from [crop_size[0], 1] |
|
and [crop_size[1]], 1], and use them as in "relative" crop type. |
|
- "absolute" crop a (crop_size[0], crop_size[1]) region from input image. |
|
crop_size must be smaller than the input image size. |
|
- "absolute_range", for an input of size (H, W), uniformly sample H_crop in |
|
[crop_size[0], min(H, crop_size[1])] and W_crop in [crop_size[0], min(W, crop_size[1])]. |
|
Then crop a region (H_crop, W_crop). |
|
""" |
|
|
|
|
|
super().__init__() |
|
assert crop_type in ["relative_range", "relative", "absolute", "absolute_range"] |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
h, w = image.shape[:2] |
|
croph, cropw = self.get_crop_size((h, w)) |
|
assert h >= croph and w >= cropw, "Shape computation in {} has bugs.".format(self) |
|
h0 = np.random.randint(h - croph + 1) |
|
w0 = np.random.randint(w - cropw + 1) |
|
return CropTransform(w0, h0, cropw, croph) |
|
|
|
def get_crop_size(self, image_size): |
|
""" |
|
Args: |
|
image_size (tuple): height, width |
|
|
|
Returns: |
|
crop_size (tuple): height, width in absolute pixels |
|
""" |
|
h, w = image_size |
|
if self.crop_type == "relative": |
|
ch, cw = self.crop_size |
|
return int(h * ch + 0.5), int(w * cw + 0.5) |
|
elif self.crop_type == "relative_range": |
|
crop_size = np.asarray(self.crop_size, dtype=np.float32) |
|
ch, cw = crop_size + np.random.rand(2) * (1 - crop_size) |
|
return int(h * ch + 0.5), int(w * cw + 0.5) |
|
elif self.crop_type == "absolute": |
|
return (min(self.crop_size[0], h), min(self.crop_size[1], w)) |
|
elif self.crop_type == "absolute_range": |
|
assert self.crop_size[0] <= self.crop_size[1] |
|
ch = np.random.randint(min(h, self.crop_size[0]), min(h, self.crop_size[1]) + 1) |
|
cw = np.random.randint(min(w, self.crop_size[0]), min(w, self.crop_size[1]) + 1) |
|
return ch, cw |
|
else: |
|
raise NotImplementedError("Unknown crop type {}".format(self.crop_type)) |
|
|
|
|
|
class RandomCrop_CategoryAreaConstraint(Augmentation): |
|
""" |
|
Similar to :class:`RandomCrop`, but find a cropping window such that no single category |
|
occupies a ratio of more than `single_category_max_area` in semantic segmentation ground |
|
truth, which can cause unstability in training. The function attempts to find such a valid |
|
cropping window for at most 10 times. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
crop_type: str, |
|
crop_size, |
|
single_category_max_area: float = 1.0, |
|
ignored_category: int = None, |
|
): |
|
""" |
|
Args: |
|
crop_type, crop_size: same as in :class:`RandomCrop` |
|
single_category_max_area: the maximum allowed area ratio of a |
|
category. Set to 1.0 to disable |
|
ignored_category: allow this category in the semantic segmentation |
|
ground truth to exceed the area ratio. Usually set to the category |
|
that's ignored in training. |
|
""" |
|
self.crop_aug = RandomCrop(crop_type, crop_size) |
|
self._init(locals()) |
|
|
|
def get_transform(self, image, sem_seg): |
|
if self.single_category_max_area >= 1.0: |
|
return self.crop_aug.get_transform(image) |
|
else: |
|
h, w = sem_seg.shape |
|
for _ in range(10): |
|
crop_size = self.crop_aug.get_crop_size((h, w)) |
|
y0 = np.random.randint(h - crop_size[0] + 1) |
|
x0 = np.random.randint(w - crop_size[1] + 1) |
|
sem_seg_temp = sem_seg[y0 : y0 + crop_size[0], x0 : x0 + crop_size[1]] |
|
labels, cnt = np.unique(sem_seg_temp, return_counts=True) |
|
if self.ignored_category is not None: |
|
cnt = cnt[labels != self.ignored_category] |
|
if len(cnt) > 1 and np.max(cnt) < np.sum(cnt) * self.single_category_max_area: |
|
break |
|
crop_tfm = CropTransform(x0, y0, crop_size[1], crop_size[0]) |
|
return crop_tfm |
|
|
|
|
|
class RandomExtent(Augmentation): |
|
""" |
|
Outputs an image by cropping a random "subrect" of the source image. |
|
|
|
The subrect can be parameterized to include pixels outside the source image, |
|
in which case they will be set to zeros (i.e. black). The size of the output |
|
image will vary with the size of the random subrect. |
|
""" |
|
|
|
def __init__(self, scale_range, shift_range): |
|
""" |
|
Args: |
|
output_size (h, w): Dimensions of output image |
|
scale_range (l, h): Range of input-to-output size scaling factor |
|
shift_range (x, y): Range of shifts of the cropped subrect. The rect |
|
is shifted by [w / 2 * Uniform(-x, x), h / 2 * Uniform(-y, y)], |
|
where (w, h) is the (width, height) of the input image. Set each |
|
component to zero to crop at the image's center. |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
img_h, img_w = image.shape[:2] |
|
|
|
|
|
src_rect = np.array([-0.5 * img_w, -0.5 * img_h, 0.5 * img_w, 0.5 * img_h]) |
|
|
|
|
|
src_rect *= np.random.uniform(self.scale_range[0], self.scale_range[1]) |
|
|
|
|
|
src_rect[0::2] += self.shift_range[0] * img_w * (np.random.rand() - 0.5) |
|
src_rect[1::2] += self.shift_range[1] * img_h * (np.random.rand() - 0.5) |
|
|
|
|
|
src_rect[0::2] += 0.5 * img_w |
|
src_rect[1::2] += 0.5 * img_h |
|
|
|
return ExtentTransform( |
|
src_rect=(src_rect[0], src_rect[1], src_rect[2], src_rect[3]), |
|
output_size=(int(src_rect[3] - src_rect[1]), int(src_rect[2] - src_rect[0])), |
|
) |
|
|
|
|
|
class RandomContrast(Augmentation): |
|
""" |
|
Randomly transforms image contrast. |
|
|
|
Contrast intensity is uniformly sampled in (intensity_min, intensity_max). |
|
- intensity < 1 will reduce contrast |
|
- intensity = 1 will preserve the input image |
|
- intensity > 1 will increase contrast |
|
|
|
See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html |
|
""" |
|
|
|
def __init__(self, intensity_min, intensity_max): |
|
""" |
|
Args: |
|
intensity_min (float): Minimum augmentation |
|
intensity_max (float): Maximum augmentation |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
w = np.random.uniform(self.intensity_min, self.intensity_max) |
|
return BlendTransform(src_image=image.mean(), src_weight=1 - w, dst_weight=w) |
|
|
|
|
|
class RandomBrightness(Augmentation): |
|
""" |
|
Randomly transforms image brightness. |
|
|
|
Brightness intensity is uniformly sampled in (intensity_min, intensity_max). |
|
- intensity < 1 will reduce brightness |
|
- intensity = 1 will preserve the input image |
|
- intensity > 1 will increase brightness |
|
|
|
See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html |
|
""" |
|
|
|
def __init__(self, intensity_min, intensity_max): |
|
""" |
|
Args: |
|
intensity_min (float): Minimum augmentation |
|
intensity_max (float): Maximum augmentation |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
w = np.random.uniform(self.intensity_min, self.intensity_max) |
|
return BlendTransform(src_image=0, src_weight=1 - w, dst_weight=w) |
|
|
|
|
|
class RandomSaturation(Augmentation): |
|
""" |
|
Randomly transforms saturation of an RGB image. |
|
Input images are assumed to have 'RGB' channel order. |
|
|
|
Saturation intensity is uniformly sampled in (intensity_min, intensity_max). |
|
- intensity < 1 will reduce saturation (make the image more grayscale) |
|
- intensity = 1 will preserve the input image |
|
- intensity > 1 will increase saturation |
|
|
|
See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html |
|
""" |
|
|
|
def __init__(self, intensity_min, intensity_max): |
|
""" |
|
Args: |
|
intensity_min (float): Minimum augmentation (1 preserves input). |
|
intensity_max (float): Maximum augmentation (1 preserves input). |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
assert image.shape[-1] == 3, "RandomSaturation only works on RGB images" |
|
w = np.random.uniform(self.intensity_min, self.intensity_max) |
|
grayscale = image.dot([0.299, 0.587, 0.114])[:, :, np.newaxis] |
|
return BlendTransform(src_image=grayscale, src_weight=1 - w, dst_weight=w) |
|
|
|
|
|
class RandomLighting(Augmentation): |
|
""" |
|
The "lighting" augmentation described in AlexNet, using fixed PCA over ImageNet. |
|
Input images are assumed to have 'RGB' channel order. |
|
|
|
The degree of color jittering is randomly sampled via a normal distribution, |
|
with standard deviation given by the scale parameter. |
|
""" |
|
|
|
def __init__(self, scale): |
|
""" |
|
Args: |
|
scale (float): Standard deviation of principal component weighting. |
|
""" |
|
super().__init__() |
|
self._init(locals()) |
|
self.eigen_vecs = np.array( |
|
[[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]] |
|
) |
|
self.eigen_vals = np.array([0.2175, 0.0188, 0.0045]) |
|
|
|
def get_transform(self, image): |
|
assert image.shape[-1] == 3, "RandomLighting only works on RGB images" |
|
weights = np.random.normal(scale=self.scale, size=3) |
|
return BlendTransform( |
|
src_image=self.eigen_vecs.dot(weights * self.eigen_vals), src_weight=1.0, dst_weight=1.0 |
|
) |
|
|
|
|
|
class RandomResize(Augmentation): |
|
"""Randomly resize image to a target size in shape_list""" |
|
|
|
def __init__(self, shape_list, interp=Image.BILINEAR): |
|
""" |
|
Args: |
|
shape_list: a list of shapes in (h, w) |
|
interp: PIL interpolation method |
|
""" |
|
self.shape_list = shape_list |
|
self._init(locals()) |
|
|
|
def get_transform(self, image): |
|
shape_idx = np.random.randint(low=0, high=len(self.shape_list)) |
|
h, w = self.shape_list[shape_idx] |
|
return ResizeTransform(image.shape[0], image.shape[1], h, w, self.interp) |
|
|
|
|
|
class MinIoURandomCrop(Augmentation): |
|
"""Random crop the image & bboxes, the cropped patches have minimum IoU |
|
requirement with original image & bboxes, the IoU threshold is randomly |
|
selected from min_ious. |
|
|
|
Args: |
|
min_ious (tuple): minimum IoU threshold for all intersections with |
|
bounding boxes |
|
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, |
|
where a >= min_crop_size) |
|
mode_trials: number of trials for sampling min_ious threshold |
|
crop_trials: number of trials for sampling crop_size after cropping |
|
""" |
|
|
|
def __init__( |
|
self, |
|
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), |
|
min_crop_size=0.3, |
|
mode_trials=1000, |
|
crop_trials=50, |
|
): |
|
self.min_ious = min_ious |
|
self.sample_mode = (1, *min_ious, 0) |
|
self.min_crop_size = min_crop_size |
|
self.mode_trials = mode_trials |
|
self.crop_trials = crop_trials |
|
|
|
def get_transform(self, image, boxes): |
|
"""Call function to crop images and bounding boxes with minimum IoU |
|
constraint. |
|
|
|
Args: |
|
boxes: ground truth boxes in (x1, y1, x2, y2) format |
|
""" |
|
if boxes is None: |
|
return NoOpTransform() |
|
h, w, c = image.shape |
|
for _ in range(self.mode_trials): |
|
mode = random.choice(self.sample_mode) |
|
self.mode = mode |
|
if mode == 1: |
|
return NoOpTransform() |
|
|
|
min_iou = mode |
|
for _ in range(self.crop_trials): |
|
new_w = random.uniform(self.min_crop_size * w, w) |
|
new_h = random.uniform(self.min_crop_size * h, h) |
|
|
|
|
|
if new_h / new_w < 0.5 or new_h / new_w > 2: |
|
continue |
|
|
|
left = random.uniform(w - new_w) |
|
top = random.uniform(h - new_h) |
|
|
|
patch = np.array((int(left), int(top), int(left + new_w), int(top + new_h))) |
|
|
|
if patch[2] == patch[0] or patch[3] == patch[1]: |
|
continue |
|
overlaps = pairwise_iou( |
|
Boxes(patch.reshape(-1, 4)), Boxes(boxes.reshape(-1, 4)) |
|
).reshape(-1) |
|
if len(overlaps) > 0 and overlaps.min() < min_iou: |
|
continue |
|
|
|
|
|
|
|
if len(overlaps) > 0: |
|
|
|
def is_center_of_bboxes_in_patch(boxes, patch): |
|
center = (boxes[:, :2] + boxes[:, 2:]) / 2 |
|
mask = ( |
|
(center[:, 0] > patch[0]) |
|
* (center[:, 1] > patch[1]) |
|
* (center[:, 0] < patch[2]) |
|
* (center[:, 1] < patch[3]) |
|
) |
|
return mask |
|
|
|
mask = is_center_of_bboxes_in_patch(boxes, patch) |
|
if not mask.any(): |
|
continue |
|
return CropTransform(int(left), int(top), int(new_w), int(new_h)) |
|
|