|
|
|
import logging |
|
import math |
|
from typing import List, Tuple, Union |
|
import torch |
|
|
|
from detectron2.layers import batched_nms, cat, move_device_like |
|
from detectron2.structures import Boxes, Instances |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _is_tracing(): |
|
|
|
if torch.jit.is_scripting(): |
|
|
|
return False |
|
else: |
|
return torch.jit.is_tracing() |
|
|
|
|
|
def find_top_rpn_proposals( |
|
proposals: List[torch.Tensor], |
|
pred_objectness_logits: List[torch.Tensor], |
|
image_sizes: List[Tuple[int, int]], |
|
nms_thresh: float, |
|
pre_nms_topk: int, |
|
post_nms_topk: int, |
|
min_box_size: float, |
|
training: bool, |
|
): |
|
""" |
|
For each feature map, select the `pre_nms_topk` highest scoring proposals, |
|
apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk` |
|
highest scoring proposals among all the feature maps for each image. |
|
|
|
Args: |
|
proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 4). |
|
All proposal predictions on the feature maps. |
|
pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A). |
|
image_sizes (list[tuple]): sizes (h, w) for each image |
|
nms_thresh (float): IoU threshold to use for NMS |
|
pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS. |
|
When RPN is run on multiple feature maps (as in FPN) this number is per |
|
feature map. |
|
post_nms_topk (int): number of top k scoring proposals to keep after applying NMS. |
|
When RPN is run on multiple feature maps (as in FPN) this number is total, |
|
over all feature maps. |
|
min_box_size (float): minimum proposal box side length in pixels (absolute units |
|
wrt input images). |
|
training (bool): True if proposals are to be used in training, otherwise False. |
|
This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..." |
|
comment. |
|
|
|
Returns: |
|
list[Instances]: list of N Instances. The i-th Instances |
|
stores post_nms_topk object proposals for image i, sorted by their |
|
objectness score in descending order. |
|
""" |
|
num_images = len(image_sizes) |
|
device = ( |
|
proposals[0].device |
|
if torch.jit.is_scripting() |
|
else ("cpu" if torch.jit.is_tracing() else proposals[0].device) |
|
) |
|
|
|
|
|
topk_scores = [] |
|
topk_proposals = [] |
|
level_ids = [] |
|
batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) |
|
for level_id, (proposals_i, logits_i) in enumerate(zip(proposals, pred_objectness_logits)): |
|
Hi_Wi_A = logits_i.shape[1] |
|
if isinstance(Hi_Wi_A, torch.Tensor): |
|
num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk) |
|
else: |
|
num_proposals_i = min(Hi_Wi_A, pre_nms_topk) |
|
|
|
topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) |
|
|
|
|
|
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] |
|
|
|
topk_proposals.append(topk_proposals_i) |
|
topk_scores.append(topk_scores_i) |
|
level_ids.append( |
|
move_device_like( |
|
torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), |
|
proposals[0], |
|
) |
|
) |
|
|
|
|
|
topk_scores = cat(topk_scores, dim=1) |
|
topk_proposals = cat(topk_proposals, dim=1) |
|
level_ids = cat(level_ids, dim=0) |
|
|
|
|
|
results: List[Instances] = [] |
|
for n, image_size in enumerate(image_sizes): |
|
boxes = Boxes(topk_proposals[n]) |
|
scores_per_img = topk_scores[n] |
|
lvl = level_ids |
|
|
|
valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) |
|
if not valid_mask.all(): |
|
if training: |
|
raise FloatingPointError( |
|
"Predicted boxes or scores contain Inf/NaN. Training has diverged." |
|
) |
|
boxes = boxes[valid_mask] |
|
scores_per_img = scores_per_img[valid_mask] |
|
lvl = lvl[valid_mask] |
|
boxes.clip(image_size) |
|
|
|
|
|
keep = boxes.nonempty(threshold=min_box_size) |
|
if _is_tracing() or keep.sum().item() != len(boxes): |
|
boxes, scores_per_img, lvl = boxes[keep], scores_per_img[keep], lvl[keep] |
|
|
|
keep = batched_nms(boxes.tensor, scores_per_img, lvl, nms_thresh) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
keep = keep[:post_nms_topk] |
|
|
|
res = Instances(image_size) |
|
res.proposal_boxes = boxes[keep] |
|
res.objectness_logits = scores_per_img[keep] |
|
results.append(res) |
|
return results |
|
|
|
|
|
def add_ground_truth_to_proposals( |
|
gt: Union[List[Instances], List[Boxes]], proposals: List[Instances] |
|
) -> List[Instances]: |
|
""" |
|
Call `add_ground_truth_to_proposals_single_image` for all images. |
|
|
|
Args: |
|
gt(Union[List[Instances], List[Boxes]): list of N elements. Element i is a Instances |
|
representing the ground-truth for image i. |
|
proposals (list[Instances]): list of N elements. Element i is a Instances |
|
representing the proposals for image i. |
|
|
|
Returns: |
|
list[Instances]: list of N Instances. Each is the proposals for the image, |
|
with field "proposal_boxes" and "objectness_logits". |
|
""" |
|
assert gt is not None |
|
|
|
if len(proposals) != len(gt): |
|
raise ValueError("proposals and gt should have the same length as the number of images!") |
|
if len(proposals) == 0: |
|
return proposals |
|
|
|
return [ |
|
add_ground_truth_to_proposals_single_image(gt_i, proposals_i) |
|
for gt_i, proposals_i in zip(gt, proposals) |
|
] |
|
|
|
|
|
def add_ground_truth_to_proposals_single_image( |
|
gt: Union[Instances, Boxes], proposals: Instances |
|
) -> Instances: |
|
""" |
|
Augment `proposals` with `gt`. |
|
|
|
Args: |
|
Same as `add_ground_truth_to_proposals`, but with gt and proposals |
|
per image. |
|
|
|
Returns: |
|
Same as `add_ground_truth_to_proposals`, but for only one image. |
|
""" |
|
if isinstance(gt, Boxes): |
|
|
|
gt = Instances(proposals.image_size, gt_boxes=gt) |
|
|
|
gt_boxes = gt.gt_boxes |
|
device = proposals.objectness_logits.device |
|
|
|
|
|
gt_logit_value = math.log((1.0 - 1e-10) / (1 - (1.0 - 1e-10))) |
|
gt_logits = gt_logit_value * torch.ones(len(gt_boxes), device=device) |
|
|
|
|
|
gt_proposal = Instances(proposals.image_size, **gt.get_fields()) |
|
gt_proposal.proposal_boxes = gt_boxes |
|
gt_proposal.objectness_logits = gt_logits |
|
|
|
for key in proposals.get_fields().keys(): |
|
assert gt_proposal.has( |
|
key |
|
), "The attribute '{}' in `proposals` does not exist in `gt`".format(key) |
|
|
|
|
|
|
|
new_proposals = Instances.cat([proposals, gt_proposal]) |
|
|
|
return new_proposals |
|
|