|
|
|
import logging |
|
import numpy as np |
|
import torch |
|
|
|
from detectron2.config import configurable |
|
from detectron2.layers import ShapeSpec, batched_nms_rotated |
|
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated |
|
from detectron2.utils.events import get_event_storage |
|
|
|
from ..box_regression import Box2BoxTransformRotated |
|
from ..poolers import ROIPooler |
|
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals |
|
from .box_head import build_box_head |
|
from .fast_rcnn import FastRCNNOutputLayers |
|
from .roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
""" |
|
Shape shorthand in this module: |
|
|
|
N: number of images in the minibatch |
|
R: number of ROIs, combined over all images, in the minibatch |
|
Ri: number of ROIs in image i |
|
K: number of foreground classes. E.g.,there are 80 foreground classes in COCO. |
|
|
|
Naming convention: |
|
|
|
deltas: refers to the 5-d (dx, dy, dw, dh, da) deltas that parameterize the box2box |
|
transform (see :class:`box_regression.Box2BoxTransformRotated`). |
|
|
|
pred_class_logits: predicted class scores in [-inf, +inf]; use |
|
softmax(pred_class_logits) to estimate P(class). |
|
|
|
gt_classes: ground-truth classification labels in [0, K], where [0, K) represent |
|
foreground object classes and K represents the background class. |
|
|
|
pred_proposal_deltas: predicted rotated box2box transform deltas for transforming proposals |
|
to detection box predictions. |
|
|
|
gt_proposal_deltas: ground-truth rotated box2box transform deltas |
|
""" |
|
|
|
|
|
def fast_rcnn_inference_rotated( |
|
boxes, scores, image_shapes, score_thresh, nms_thresh, topk_per_image |
|
): |
|
""" |
|
Call `fast_rcnn_inference_single_image_rotated` for all images. |
|
|
|
Args: |
|
boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic |
|
boxes for each image. Element i has shape (Ri, K * 5) if doing |
|
class-specific regression, or (Ri, 5) if doing class-agnostic |
|
regression, where Ri is the number of predicted objects for image i. |
|
This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. |
|
scores (list[Tensor]): A list of Tensors of predicted class scores for each image. |
|
Element i has shape (Ri, K + 1), where Ri is the number of predicted objects |
|
for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. |
|
image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. |
|
score_thresh (float): Only return detections with a confidence score exceeding this |
|
threshold. |
|
nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. |
|
topk_per_image (int): The number of top scoring detections to return. Set < 0 to return |
|
all detections. |
|
|
|
Returns: |
|
instances: (list[Instances]): A list of N instances, one for each image in the batch, |
|
that stores the topk most confidence detections. |
|
kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates |
|
the corresponding boxes/scores index in [0, Ri) from the input, for image i. |
|
""" |
|
result_per_image = [ |
|
fast_rcnn_inference_single_image_rotated( |
|
boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image |
|
) |
|
for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes) |
|
] |
|
return [x[0] for x in result_per_image], [x[1] for x in result_per_image] |
|
|
|
|
|
@torch.no_grad() |
|
def fast_rcnn_inference_single_image_rotated( |
|
boxes, scores, image_shape, score_thresh, nms_thresh, topk_per_image |
|
): |
|
""" |
|
Single-image inference. Return rotated bounding-box detection results by thresholding |
|
on scores and applying rotated non-maximum suppression (Rotated NMS). |
|
|
|
Args: |
|
Same as `fast_rcnn_inference_rotated`, but with rotated boxes, scores, and image shapes |
|
per image. |
|
|
|
Returns: |
|
Same as `fast_rcnn_inference_rotated`, but for only one image. |
|
""" |
|
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) |
|
if not valid_mask.all(): |
|
boxes = boxes[valid_mask] |
|
scores = scores[valid_mask] |
|
|
|
B = 5 |
|
scores = scores[:, :-1] |
|
num_bbox_reg_classes = boxes.shape[1] // B |
|
|
|
boxes = RotatedBoxes(boxes.reshape(-1, B)) |
|
boxes.clip(image_shape) |
|
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, B) |
|
|
|
filter_mask = scores > score_thresh |
|
|
|
|
|
filter_inds = filter_mask.nonzero() |
|
if num_bbox_reg_classes == 1: |
|
boxes = boxes[filter_inds[:, 0], 0] |
|
else: |
|
boxes = boxes[filter_mask] |
|
scores = scores[filter_mask] |
|
|
|
|
|
keep = batched_nms_rotated(boxes, scores, filter_inds[:, 1], nms_thresh) |
|
if topk_per_image >= 0: |
|
keep = keep[:topk_per_image] |
|
boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep] |
|
|
|
result = Instances(image_shape) |
|
result.pred_boxes = RotatedBoxes(boxes) |
|
result.scores = scores |
|
result.pred_classes = filter_inds[:, 1] |
|
|
|
return result, filter_inds[:, 0] |
|
|
|
|
|
class RotatedFastRCNNOutputLayers(FastRCNNOutputLayers): |
|
""" |
|
Two linear layers for predicting Rotated Fast R-CNN outputs. |
|
""" |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
args = super().from_config(cfg, input_shape) |
|
args["box2box_transform"] = Box2BoxTransformRotated( |
|
weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS |
|
) |
|
return args |
|
|
|
def inference(self, predictions, proposals): |
|
""" |
|
Returns: |
|
list[Instances]: same as `fast_rcnn_inference_rotated`. |
|
list[Tensor]: same as `fast_rcnn_inference_rotated`. |
|
""" |
|
boxes = self.predict_boxes(predictions, proposals) |
|
scores = self.predict_probs(predictions, proposals) |
|
image_shapes = [x.image_size for x in proposals] |
|
|
|
return fast_rcnn_inference_rotated( |
|
boxes, |
|
scores, |
|
image_shapes, |
|
self.test_score_thresh, |
|
self.test_nms_thresh, |
|
self.test_topk_per_image, |
|
) |
|
|
|
|
|
@ROI_HEADS_REGISTRY.register() |
|
class RROIHeads(StandardROIHeads): |
|
""" |
|
This class is used by Rotated Fast R-CNN to detect rotated boxes. |
|
For now, it only supports box predictions but not mask or keypoints. |
|
""" |
|
|
|
@configurable |
|
def __init__(self, **kwargs): |
|
""" |
|
NOTE: this interface is experimental. |
|
""" |
|
super().__init__(**kwargs) |
|
assert ( |
|
not self.mask_on and not self.keypoint_on |
|
), "Mask/Keypoints not supported in Rotated ROIHeads." |
|
assert not self.train_on_pred_boxes, "train_on_pred_boxes not implemented for RROIHeads!" |
|
|
|
@classmethod |
|
def _init_box_head(cls, cfg, input_shape): |
|
|
|
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES |
|
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION |
|
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) |
|
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO |
|
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE |
|
|
|
assert pooler_type in ["ROIAlignRotated"], pooler_type |
|
|
|
in_channels = [input_shape[f].channels for f in in_features][0] |
|
|
|
box_pooler = ROIPooler( |
|
output_size=pooler_resolution, |
|
scales=pooler_scales, |
|
sampling_ratio=sampling_ratio, |
|
pooler_type=pooler_type, |
|
) |
|
box_head = build_box_head( |
|
cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution) |
|
) |
|
|
|
box_predictor = RotatedFastRCNNOutputLayers(cfg, box_head.output_shape) |
|
return { |
|
"box_in_features": in_features, |
|
"box_pooler": box_pooler, |
|
"box_head": box_head, |
|
"box_predictor": box_predictor, |
|
} |
|
|
|
@torch.no_grad() |
|
def label_and_sample_proposals(self, proposals, targets): |
|
""" |
|
Prepare some proposals to be used to train the RROI heads. |
|
It performs box matching between `proposals` and `targets`, and assigns |
|
training labels to the proposals. |
|
It returns `self.batch_size_per_image` random samples from proposals and groundtruth boxes, |
|
with a fraction of positives that is no larger than `self.positive_sample_fraction. |
|
|
|
Args: |
|
See :meth:`StandardROIHeads.forward` |
|
|
|
Returns: |
|
list[Instances]: length `N` list of `Instances`s containing the proposals |
|
sampled for training. Each `Instances` has the following fields: |
|
- proposal_boxes: the rotated proposal boxes |
|
- gt_boxes: the ground-truth rotated boxes that the proposal is assigned to |
|
(this is only meaningful if the proposal has a label > 0; if label = 0 |
|
then the ground-truth box is random) |
|
- gt_classes: the ground-truth classification lable for each proposal |
|
""" |
|
if self.proposal_append_gt: |
|
proposals = add_ground_truth_to_proposals(targets, proposals) |
|
|
|
proposals_with_gt = [] |
|
|
|
num_fg_samples = [] |
|
num_bg_samples = [] |
|
for proposals_per_image, targets_per_image in zip(proposals, targets): |
|
has_gt = len(targets_per_image) > 0 |
|
match_quality_matrix = pairwise_iou_rotated( |
|
targets_per_image.gt_boxes, proposals_per_image.proposal_boxes |
|
) |
|
matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) |
|
sampled_idxs, gt_classes = self._sample_proposals( |
|
matched_idxs, matched_labels, targets_per_image.gt_classes |
|
) |
|
|
|
proposals_per_image = proposals_per_image[sampled_idxs] |
|
proposals_per_image.gt_classes = gt_classes |
|
|
|
if has_gt: |
|
sampled_targets = matched_idxs[sampled_idxs] |
|
proposals_per_image.gt_boxes = targets_per_image.gt_boxes[sampled_targets] |
|
|
|
num_bg_samples.append((gt_classes == self.num_classes).sum().item()) |
|
num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) |
|
proposals_with_gt.append(proposals_per_image) |
|
|
|
|
|
storage = get_event_storage() |
|
storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples)) |
|
storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples)) |
|
|
|
return proposals_with_gt |
|
|