|
|
|
|
|
|
|
""" |
|
TridentNet Training Script. |
|
|
|
This script is a simplified version of the training script in detectron2/tools. |
|
""" |
|
|
|
import os |
|
|
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import get_cfg |
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch |
|
from detectron2.evaluation import COCOEvaluator |
|
|
|
from tridentnet import add_tridentnet_config |
|
|
|
|
|
class Trainer(DefaultTrainer): |
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None): |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
return COCOEvaluator(dataset_name, cfg, True, output_folder) |
|
|
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
add_tridentnet_config(cfg) |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
return res |
|
|
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|