|
import argparse |
|
import cv2 |
|
import os |
|
import json |
|
import numpy as np |
|
from PIL import Image as PILImage |
|
import joblib |
|
|
|
|
|
def mask_nms(masks, bbox_scores, instances_confidence_threshold=0.5, overlap_threshold=0.7): |
|
""" |
|
NMS-like procedure used in Panoptic Segmentation |
|
Remove the overlap areas of different instances in Instance Segmentation |
|
""" |
|
panoptic_seg = np.zeros(masks.shape[:2], dtype=np.uint8) |
|
sorted_inds = list(range(len(bbox_scores))) |
|
current_segment_id = 0 |
|
segments_score = [] |
|
|
|
for inst_id in sorted_inds: |
|
score = bbox_scores[inst_id] |
|
if score < instances_confidence_threshold: |
|
break |
|
mask = masks[:, :, inst_id] |
|
mask_area = mask.sum() |
|
|
|
if mask_area == 0: |
|
continue |
|
|
|
intersect = (mask > 0) & (panoptic_seg > 0) |
|
intersect_area = intersect.sum() |
|
|
|
if intersect_area * 1.0 / mask_area > overlap_threshold: |
|
continue |
|
|
|
if intersect_area > 0: |
|
mask = mask & (panoptic_seg == 0) |
|
|
|
current_segment_id += 1 |
|
|
|
|
|
panoptic_seg = np.where(mask == 0, panoptic_seg, current_segment_id) |
|
segments_score.append(score) |
|
|
|
return panoptic_seg, segments_score |
|
|
|
|
|
def extend(si, sj, instance_label, global_label, panoptic_seg_mask, class_map): |
|
""" |
|
""" |
|
directions = [[-1, 0], [0, 1], [1, 0], [0, -1], |
|
[1, 1], [1, -1], [-1, 1], [-1, -1]] |
|
|
|
inst_class = instance_label[si, sj] |
|
human_class = panoptic_seg_mask[si, sj] |
|
global_class = class_map[inst_class] |
|
queue = [[si, sj]] |
|
|
|
while len(queue) != 0: |
|
cur = queue[0] |
|
queue.pop(0) |
|
|
|
for direction in directions: |
|
ni = cur[0] + direction[0] |
|
nj = cur[1] + direction[1] |
|
|
|
if ni >= 0 and nj >= 0 and \ |
|
ni < instance_label.shape[0] and \ |
|
nj < instance_label.shape[1] and \ |
|
instance_label[ni, nj] == 0 and \ |
|
global_label[ni, nj] == global_class: |
|
instance_label[ni, nj] = inst_class |
|
|
|
panoptic_seg_mask[ni, nj] = human_class |
|
queue.append([ni, nj]) |
|
|
|
|
|
def refine(instance_label, panoptic_seg_mask, global_label, class_map): |
|
""" |
|
Inputs: |
|
[ instance_label ] |
|
np.array() with shape [h, w] |
|
[ global_label ] with shape [h, w] |
|
np.array() |
|
""" |
|
for i in range(instance_label.shape[0]): |
|
for j in range(instance_label.shape[1]): |
|
if instance_label[i, j] != 0: |
|
extend(i, j, instance_label, global_label, panoptic_seg_mask, class_map) |
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Inputs: |
|
=num_cls= |
|
Number of classes. |
|
Returns: |
|
The color map. |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
def patch2img_output(patch_dir, img_name, img_height, img_width, bbox, bbox_type, num_class): |
|
"""transform bbox patch outputs to image output""" |
|
assert bbox_type == 'gt' or 'msrcnn' |
|
output = np.zeros((img_height, img_width, num_class), dtype='float') |
|
output[:, :, 0] = np.inf |
|
count_predictions = np.zeros((img_height, img_width, num_class), dtype='int32') |
|
for i in range(len(bbox)): |
|
file_path = os.path.join(patch_dir, os.path.splitext(img_name)[0] + '_' + str(i + 1) + '_' + bbox_type + '.npy') |
|
bbox_output = np.load(file_path) |
|
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += bbox_output[:, :, 1:] |
|
count_predictions[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += 1 |
|
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0] \ |
|
= np.minimum(output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0], bbox_output[:, :, 0]) |
|
|
|
|
|
count_predictions[count_predictions == 0] = 1 |
|
return output / count_predictions |
|
|
|
|
|
def get_instance(cat_gt, panoptic_seg_mask): |
|
""" |
|
""" |
|
instance_gt = np.zeros_like(cat_gt, dtype=np.uint8) |
|
num_humans = len(np.unique(panoptic_seg_mask)) - 1 |
|
class_map = {} |
|
|
|
total_part_num = 0 |
|
for id in range(1, num_humans + 1): |
|
human_part_label = np.where(panoptic_seg_mask == id, cat_gt, 0).astype(np.uint8) |
|
|
|
part_classes = np.unique(human_part_label) |
|
|
|
exceed = False |
|
for part_id in part_classes: |
|
if part_id == 0: |
|
continue |
|
total_part_num += 1 |
|
|
|
if total_part_num > 255: |
|
print("total_part_num exceed, return current instance map: {}".format(total_part_num)) |
|
exceed = True |
|
break |
|
class_map[total_part_num] = part_id |
|
instance_gt[np.where(human_part_label == part_id)] = total_part_num |
|
if exceed: |
|
break |
|
|
|
|
|
ori_cur_labels = np.unique(instance_gt) |
|
total_num_label = len(ori_cur_labels) |
|
if instance_gt.max() + 1 != total_num_label: |
|
for label in range(1, total_num_label): |
|
instance_gt[instance_gt == ori_cur_labels[label]] = label |
|
|
|
final_class_map = {} |
|
for label in range(1, total_num_label): |
|
if label >= 1: |
|
final_class_map[label] = class_map[ori_cur_labels[label]] |
|
|
|
return instance_gt, final_class_map |
|
|
|
|
|
def compute_confidence(im_name, feature_map, class_map, |
|
instance_label, output_dir, |
|
panoptic_seg_mask, seg_score_list): |
|
""" |
|
""" |
|
conf_file = open(os.path.join(output_dir, os.path.splitext(im_name)[0] + '.txt'), 'w') |
|
|
|
weighted_map = np.zeros_like(feature_map[:, :, 0]) |
|
for index, score in enumerate(seg_score_list): |
|
weighted_map += (panoptic_seg_mask == index + 1) * score |
|
|
|
for label in class_map.keys(): |
|
cls = class_map[label] |
|
confidence = feature_map[:, :, cls].reshape(-1)[np.where(instance_label.reshape(-1) == label)] |
|
confidence = (weighted_map * feature_map[:, :, cls].copy()).reshape(-1)[ |
|
np.where(instance_label.reshape(-1) == label)] |
|
|
|
confidence = confidence.sum() / len(confidence) |
|
conf_file.write('{} {}\n'.format(cls, confidence)) |
|
|
|
conf_file.close() |
|
|
|
|
|
def result_saving(fused_output, img_name, img_height, img_width, output_dir, mask_output_path, bbox_score, msrcnn_bbox): |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
global_root = os.path.join(output_dir, 'global_parsing') |
|
instance_root = os.path.join(output_dir, 'instance_parsing') |
|
tag_dir = os.path.join(output_dir, 'global_tag') |
|
|
|
if not os.path.exists(global_root): |
|
os.makedirs(global_root) |
|
if not os.path.exists(instance_root): |
|
os.makedirs(instance_root) |
|
if not os.path.exists(tag_dir): |
|
os.makedirs(tag_dir) |
|
|
|
|
|
palette = get_palette(256) |
|
|
|
fused_output = cv2.resize(fused_output, dsize=(img_width, img_height), interpolation=cv2.INTER_LINEAR) |
|
seg_pred = np.asarray(np.argmax(fused_output, axis=2), dtype=np.uint8) |
|
masks = np.load(mask_output_path) |
|
masks[np.where(seg_pred == 0)] = 0 |
|
|
|
panoptic_seg_mask = masks |
|
seg_score_list = bbox_score |
|
|
|
instance_pred, class_map = get_instance(seg_pred, panoptic_seg_mask) |
|
refine(instance_pred, panoptic_seg_mask, seg_pred, class_map) |
|
|
|
compute_confidence(img_name, fused_output, class_map, instance_pred, instance_root, |
|
panoptic_seg_mask, seg_score_list) |
|
|
|
ins_seg_results = open(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.txt'), "a") |
|
keep_human_id_list = list(np.unique(panoptic_seg_mask)) |
|
if 0 in keep_human_id_list: |
|
keep_human_id_list.remove(0) |
|
for i in keep_human_id_list: |
|
ins_seg_results.write('{:.6f} {} {} {} {}\n'.format(seg_score_list[i - 1], |
|
int(msrcnn_bbox[i - 1][1]), int(msrcnn_bbox[i - 1][0]), |
|
int(msrcnn_bbox[i - 1][3]), int(msrcnn_bbox[i - 1][2]))) |
|
ins_seg_results.close() |
|
|
|
output_im_global = PILImage.fromarray(seg_pred) |
|
output_im_instance = PILImage.fromarray(instance_pred) |
|
output_im_tag = PILImage.fromarray(panoptic_seg_mask) |
|
output_im_global.putpalette(palette) |
|
output_im_instance.putpalette(palette) |
|
output_im_tag.putpalette(palette) |
|
|
|
output_im_global.save(os.path.join(global_root, os.path.splitext(img_name)[0] + '.png')) |
|
output_im_instance.save(os.path.join(instance_root, os.path.splitext(img_name)[0] + '.png')) |
|
output_im_tag.save(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.png')) |
|
|
|
|
|
def multi_process(a, args): |
|
img_name = a['im_name'] |
|
img_height = a['img_height'] |
|
img_width = a['img_width'] |
|
msrcnn_bbox = a['person_bbox'] |
|
bbox_score = a['person_bbox_score'] |
|
|
|
|
|
global_output = np.load(os.path.join(args.global_output_dir, os.path.splitext(img_name)[0] + '.npy')) |
|
|
|
msrcnn_output = patch2img_output(args.msrcnn_output_dir, img_name, img_height, img_width, msrcnn_bbox, |
|
bbox_type='msrcnn', num_class=20) |
|
|
|
gt_output = patch2img_output(args.gt_output_dir, img_name, img_height, img_width, msrcnn_bbox, bbox_type='msrcnn', |
|
num_class=20) |
|
|
|
|
|
|
|
fused_output = global_output + gt_output |
|
|
|
|
|
mask_output_path = os.path.join(args.mask_output_dir, os.path.splitext(img_name)[0] + '_mask.npy') |
|
result_saving(fused_output, img_name, img_height, img_width, args.save_dir, mask_output_path, bbox_score, msrcnn_bbox) |
|
return |
|
|
|
|
|
def main(args): |
|
json_file = open(args.test_json_path) |
|
anno = json.load(json_file)['root'] |
|
|
|
results = joblib.Parallel(n_jobs=24, verbose=10, pre_dispatch="all")( |
|
[joblib.delayed(multi_process)(a, args) for i, a in enumerate(anno)] |
|
) |
|
|
|
|
|
def get_arguments(): |
|
parser = argparse.ArgumentParser(description="obtain final prediction by logits fusion") |
|
parser.add_argument("--test_json_path", type=str, default='./data/CIHP/cascade_152_finetune/test.json') |
|
parser.add_argument("--global_output_dir", type=str, |
|
default='./data/CIHP/global/global_result-cihp-resnet101/global_output') |
|
|
|
|
|
parser.add_argument("--gt_output_dir", type=str, |
|
default='./data/CIHP/cascade_152__finetune/gt_result-cihp-resnet101/gt_output') |
|
parser.add_argument("--mask_output_dir", type=str, default='./data/CIHP/cascade_152_finetune/mask') |
|
parser.add_argument("--save_dir", type=str, default='./data/CIHP/fusion_results/cihp-msrcnn_finetune') |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_arguments() |
|
main(args) |
|
|