|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .bn import ABN |
|
|
|
|
|
class DenseModule(nn.Module): |
|
def __init__(self, in_channels, growth, layers, bottleneck_factor=4, norm_act=ABN, dilation=1): |
|
super(DenseModule, self).__init__() |
|
self.in_channels = in_channels |
|
self.growth = growth |
|
self.layers = layers |
|
|
|
self.convs1 = nn.ModuleList() |
|
self.convs3 = nn.ModuleList() |
|
for i in range(self.layers): |
|
self.convs1.append(nn.Sequential(OrderedDict([ |
|
("bn", norm_act(in_channels)), |
|
("conv", nn.Conv2d(in_channels, self.growth * bottleneck_factor, 1, bias=False)) |
|
]))) |
|
self.convs3.append(nn.Sequential(OrderedDict([ |
|
("bn", norm_act(self.growth * bottleneck_factor)), |
|
("conv", nn.Conv2d(self.growth * bottleneck_factor, self.growth, 3, padding=dilation, bias=False, |
|
dilation=dilation)) |
|
]))) |
|
in_channels += self.growth |
|
|
|
@property |
|
def out_channels(self): |
|
return self.in_channels + self.growth * self.layers |
|
|
|
def forward(self, x): |
|
inputs = [x] |
|
for i in range(self.layers): |
|
x = torch.cat(inputs, dim=1) |
|
x = self.convs1[i](x) |
|
x = self.convs3[i](x) |
|
inputs += [x] |
|
|
|
return torch.cat(inputs, dim=1) |
|
|