|
import pdb |
|
from os import path |
|
import torch |
|
import torch.distributed as dist |
|
import torch.autograd as autograd |
|
import torch.cuda.comm as comm |
|
from torch.autograd.function import once_differentiable |
|
from torch.utils.cpp_extension import load |
|
|
|
_src_path = path.join(path.dirname(path.abspath(__file__)), "src") |
|
_backend = load(name="inplace_abn", |
|
extra_cflags=["-O3"], |
|
sources=[path.join(_src_path, f) for f in [ |
|
"inplace_abn.cpp", |
|
"inplace_abn_cpu.cpp", |
|
"inplace_abn_cuda.cu", |
|
"inplace_abn_cuda_half.cu" |
|
]], |
|
extra_cuda_cflags=["--expt-extended-lambda"]) |
|
|
|
|
|
ACT_RELU = "relu" |
|
ACT_LEAKY_RELU = "leaky_relu" |
|
ACT_ELU = "elu" |
|
ACT_NONE = "none" |
|
|
|
|
|
def _check(fn, *args, **kwargs): |
|
success = fn(*args, **kwargs) |
|
if not success: |
|
raise RuntimeError("CUDA Error encountered in {}".format(fn)) |
|
|
|
|
|
def _broadcast_shape(x): |
|
out_size = [] |
|
for i, s in enumerate(x.size()): |
|
if i != 1: |
|
out_size.append(1) |
|
else: |
|
out_size.append(s) |
|
return out_size |
|
|
|
|
|
def _reduce(x): |
|
if len(x.size()) == 2: |
|
return x.sum(dim=0) |
|
else: |
|
n, c = x.size()[0:2] |
|
return x.contiguous().view((n, c, -1)).sum(2).sum(0) |
|
|
|
|
|
def _count_samples(x): |
|
count = 1 |
|
for i, s in enumerate(x.size()): |
|
if i != 1: |
|
count *= s |
|
return count |
|
|
|
|
|
def _act_forward(ctx, x): |
|
if ctx.activation == ACT_LEAKY_RELU: |
|
_backend.leaky_relu_forward(x, ctx.slope) |
|
elif ctx.activation == ACT_ELU: |
|
_backend.elu_forward(x) |
|
elif ctx.activation == ACT_NONE: |
|
pass |
|
|
|
|
|
def _act_backward(ctx, x, dx): |
|
if ctx.activation == ACT_LEAKY_RELU: |
|
_backend.leaky_relu_backward(x, dx, ctx.slope) |
|
elif ctx.activation == ACT_ELU: |
|
_backend.elu_backward(x, dx) |
|
elif ctx.activation == ACT_NONE: |
|
pass |
|
|
|
|
|
class InPlaceABN(autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, weight, bias, running_mean, running_var, |
|
training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01): |
|
|
|
ctx.training = training |
|
ctx.momentum = momentum |
|
ctx.eps = eps |
|
ctx.activation = activation |
|
ctx.slope = slope |
|
ctx.affine = weight is not None and bias is not None |
|
|
|
|
|
count = _count_samples(x) |
|
x = x.contiguous() |
|
weight = weight.contiguous() if ctx.affine else x.new_empty(0) |
|
bias = bias.contiguous() if ctx.affine else x.new_empty(0) |
|
|
|
if ctx.training: |
|
mean, var = _backend.mean_var(x) |
|
|
|
|
|
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) |
|
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * count / (count - 1)) |
|
|
|
|
|
ctx.mark_dirty(x, running_mean, running_var) |
|
else: |
|
mean, var = running_mean.contiguous(), running_var.contiguous() |
|
ctx.mark_dirty(x) |
|
|
|
|
|
_backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps) |
|
_act_forward(ctx, x) |
|
|
|
|
|
ctx.var = var |
|
ctx.save_for_backward(x, var, weight, bias) |
|
ctx.mark_non_differentiable(running_mean, running_var) |
|
return x, running_mean, running_var |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, dz, _drunning_mean, _drunning_var): |
|
z, var, weight, bias = ctx.saved_tensors |
|
dz = dz.contiguous() |
|
|
|
|
|
_act_backward(ctx, z, dz) |
|
|
|
if ctx.training: |
|
edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps) |
|
else: |
|
|
|
edz = dz.new_zeros(dz.size(1)) |
|
eydz = dz.new_zeros(dz.size(1)) |
|
|
|
dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps) |
|
|
|
dweight = eydz if ctx.affine else None |
|
if dweight is not None: |
|
dweight[weight < 0] *= -1 |
|
dbias = edz if ctx.affine else None |
|
|
|
return dx, dweight, dbias, None, None, None, None, None, None, None |
|
|
|
|
|
class InPlaceABNSync(autograd.Function): |
|
@classmethod |
|
def forward(cls, ctx, x, weight, bias, running_mean, running_var, |
|
training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, equal_batches=True): |
|
|
|
ctx.training = training |
|
ctx.momentum = momentum |
|
ctx.eps = eps |
|
ctx.activation = activation |
|
ctx.slope = slope |
|
ctx.affine = weight is not None and bias is not None |
|
|
|
|
|
ctx.world_size = dist.get_world_size() if dist.is_initialized() else 1 |
|
|
|
|
|
batch_size = x.new_tensor([x.shape[0]], dtype=torch.long) |
|
|
|
x = x.contiguous() |
|
weight = weight.contiguous() if ctx.affine else x.new_empty(0) |
|
bias = bias.contiguous() if ctx.affine else x.new_empty(0) |
|
|
|
if ctx.training: |
|
mean, var = _backend.mean_var(x) |
|
if ctx.world_size > 1: |
|
|
|
if equal_batches: |
|
batch_size *= ctx.world_size |
|
else: |
|
dist.all_reduce(batch_size, dist.ReduceOp.SUM) |
|
|
|
ctx.factor = x.shape[0] / float(batch_size.item()) |
|
|
|
mean_all = mean.clone() * ctx.factor |
|
dist.all_reduce(mean_all, dist.ReduceOp.SUM) |
|
|
|
var_all = (var + (mean - mean_all) ** 2) * ctx.factor |
|
dist.all_reduce(var_all, dist.ReduceOp.SUM) |
|
|
|
mean = mean_all |
|
var = var_all |
|
|
|
|
|
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) |
|
count = batch_size.item() * x.view(x.shape[0], x.shape[1], -1).shape[-1] |
|
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * (float(count) / (count - 1))) |
|
|
|
|
|
ctx.mark_dirty(x, running_mean, running_var) |
|
else: |
|
mean, var = running_mean.contiguous(), running_var.contiguous() |
|
ctx.mark_dirty(x) |
|
|
|
|
|
_backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps) |
|
_act_forward(ctx, x) |
|
|
|
|
|
ctx.var = var |
|
ctx.save_for_backward(x, var, weight, bias) |
|
ctx.mark_non_differentiable(running_mean, running_var) |
|
return x, running_mean, running_var |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, dz, _drunning_mean, _drunning_var): |
|
z, var, weight, bias = ctx.saved_tensors |
|
dz = dz.contiguous() |
|
|
|
|
|
_act_backward(ctx, z, dz) |
|
|
|
if ctx.training: |
|
edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps) |
|
edz_local = edz.clone() |
|
eydz_local = eydz.clone() |
|
|
|
if ctx.world_size > 1: |
|
edz *= ctx.factor |
|
dist.all_reduce(edz, dist.ReduceOp.SUM) |
|
|
|
eydz *= ctx.factor |
|
dist.all_reduce(eydz, dist.ReduceOp.SUM) |
|
else: |
|
edz_local = edz = dz.new_zeros(dz.size(1)) |
|
eydz_local = eydz = dz.new_zeros(dz.size(1)) |
|
|
|
dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps) |
|
|
|
dweight = eydz_local if ctx.affine else None |
|
if dweight is not None: |
|
dweight[weight < 0] *= -1 |
|
dbias = edz_local if ctx.affine else None |
|
|
|
return dx, dweight, dbias, None, None, None, None, None, None, None |
|
|
|
|
|
inplace_abn = InPlaceABN.apply |
|
inplace_abn_sync = InPlaceABNSync.apply |
|
|
|
__all__ = ["inplace_abn", "inplace_abn_sync", "ACT_RELU", "ACT_LEAKY_RELU", "ACT_ELU", "ACT_NONE"] |
|
|