|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : [email protected] |
|
@File : psp.py |
|
@Time : 8/4/19 3:36 PM |
|
@Desc : |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
from modules import InPlaceABNSync |
|
|
|
|
|
class PSPModule(nn.Module): |
|
""" |
|
Reference: |
|
Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* |
|
""" |
|
def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): |
|
super(PSPModule, self).__init__() |
|
|
|
self.stages = [] |
|
self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) |
|
self.bottleneck = nn.Sequential( |
|
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, |
|
bias=False), |
|
InPlaceABNSync(out_features), |
|
) |
|
|
|
def _make_stage(self, features, out_features, size): |
|
prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) |
|
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) |
|
bn = InPlaceABNSync(out_features) |
|
return nn.Sequential(prior, conv, bn) |
|
|
|
def forward(self, feats): |
|
h, w = feats.size(2), feats.size(3) |
|
priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in |
|
self.stages] + [feats] |
|
bottle = self.bottleneck(torch.cat(priors, 1)) |
|
return bottle |