|
|
|
|
|
import itertools |
|
import logging |
|
import numpy as np |
|
from collections import UserDict, defaultdict |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Collection, Dict, Iterable, List, Optional, Sequence, Tuple |
|
import torch |
|
from torch.utils.data.dataset import Dataset |
|
|
|
from detectron2.config import CfgNode |
|
from detectron2.data.build import build_detection_test_loader as d2_build_detection_test_loader |
|
from detectron2.data.build import build_detection_train_loader as d2_build_detection_train_loader |
|
from detectron2.data.build import ( |
|
load_proposals_into_dataset, |
|
print_instances_class_histogram, |
|
trivial_batch_collator, |
|
worker_init_reset_seed, |
|
) |
|
from detectron2.data.catalog import DatasetCatalog, Metadata, MetadataCatalog |
|
from detectron2.data.samplers import TrainingSampler |
|
from detectron2.utils.comm import get_world_size |
|
|
|
from densepose.config import get_bootstrap_dataset_config |
|
from densepose.modeling import build_densepose_embedder |
|
|
|
from .combined_loader import CombinedDataLoader, Loader |
|
from .dataset_mapper import DatasetMapper |
|
from .datasets.coco import DENSEPOSE_CSE_KEYS_WITHOUT_MASK, DENSEPOSE_IUV_KEYS_WITHOUT_MASK |
|
from .datasets.dataset_type import DatasetType |
|
from .inference_based_loader import InferenceBasedLoader, ScoreBasedFilter |
|
from .samplers import ( |
|
DensePoseConfidenceBasedSampler, |
|
DensePoseCSEConfidenceBasedSampler, |
|
DensePoseCSEUniformSampler, |
|
DensePoseUniformSampler, |
|
MaskFromDensePoseSampler, |
|
PredictionToGroundTruthSampler, |
|
) |
|
from .transform import ImageResizeTransform |
|
from .utils import get_category_to_class_mapping, get_class_to_mesh_name_mapping |
|
from .video import ( |
|
FirstKFramesSelector, |
|
FrameSelectionStrategy, |
|
LastKFramesSelector, |
|
RandomKFramesSelector, |
|
VideoKeyframeDataset, |
|
video_list_from_file, |
|
) |
|
|
|
__all__ = ["build_detection_train_loader", "build_detection_test_loader"] |
|
|
|
|
|
Instance = Dict[str, Any] |
|
InstancePredicate = Callable[[Instance], bool] |
|
|
|
|
|
def _compute_num_images_per_worker(cfg: CfgNode) -> int: |
|
num_workers = get_world_size() |
|
images_per_batch = cfg.SOLVER.IMS_PER_BATCH |
|
assert ( |
|
images_per_batch % num_workers == 0 |
|
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format( |
|
images_per_batch, num_workers |
|
) |
|
assert ( |
|
images_per_batch >= num_workers |
|
), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format( |
|
images_per_batch, num_workers |
|
) |
|
images_per_worker = images_per_batch // num_workers |
|
return images_per_worker |
|
|
|
|
|
def _map_category_id_to_contiguous_id(dataset_name: str, dataset_dicts: Iterable[Instance]) -> None: |
|
meta = MetadataCatalog.get(dataset_name) |
|
for dataset_dict in dataset_dicts: |
|
for ann in dataset_dict["annotations"]: |
|
ann["category_id"] = meta.thing_dataset_id_to_contiguous_id[ann["category_id"]] |
|
|
|
|
|
@dataclass |
|
class _DatasetCategory: |
|
""" |
|
Class representing category data in a dataset: |
|
- id: category ID, as specified in the dataset annotations file |
|
- name: category name, as specified in the dataset annotations file |
|
- mapped_id: category ID after applying category maps (DATASETS.CATEGORY_MAPS config option) |
|
- mapped_name: category name after applying category maps |
|
- dataset_name: dataset in which the category is defined |
|
|
|
For example, when training models in a class-agnostic manner, one could take LVIS 1.0 |
|
dataset and map the animal categories to the same category as human data from COCO: |
|
id = 225 |
|
name = "cat" |
|
mapped_id = 1 |
|
mapped_name = "person" |
|
dataset_name = "lvis_v1_animals_dp_train" |
|
""" |
|
|
|
id: int |
|
name: str |
|
mapped_id: int |
|
mapped_name: str |
|
dataset_name: str |
|
|
|
|
|
_MergedCategoriesT = Dict[int, List[_DatasetCategory]] |
|
|
|
|
|
def _add_category_id_to_contiguous_id_maps_to_metadata( |
|
merged_categories: _MergedCategoriesT, |
|
) -> None: |
|
merged_categories_per_dataset = {} |
|
for contiguous_cat_id, cat_id in enumerate(sorted(merged_categories.keys())): |
|
for cat in merged_categories[cat_id]: |
|
if cat.dataset_name not in merged_categories_per_dataset: |
|
merged_categories_per_dataset[cat.dataset_name] = defaultdict(list) |
|
merged_categories_per_dataset[cat.dataset_name][cat_id].append( |
|
( |
|
contiguous_cat_id, |
|
cat, |
|
) |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
for dataset_name, merged_categories in merged_categories_per_dataset.items(): |
|
meta = MetadataCatalog.get(dataset_name) |
|
if not hasattr(meta, "thing_classes"): |
|
meta.thing_classes = [] |
|
meta.thing_dataset_id_to_contiguous_id = {} |
|
meta.thing_dataset_id_to_merged_id = {} |
|
else: |
|
meta.thing_classes.clear() |
|
meta.thing_dataset_id_to_contiguous_id.clear() |
|
meta.thing_dataset_id_to_merged_id.clear() |
|
logger.info(f"Dataset {dataset_name}: category ID to contiguous ID mapping:") |
|
for _cat_id, categories in sorted(merged_categories.items()): |
|
added_to_thing_classes = False |
|
for contiguous_cat_id, cat in categories: |
|
if not added_to_thing_classes: |
|
meta.thing_classes.append(cat.mapped_name) |
|
added_to_thing_classes = True |
|
meta.thing_dataset_id_to_contiguous_id[cat.id] = contiguous_cat_id |
|
meta.thing_dataset_id_to_merged_id[cat.id] = cat.mapped_id |
|
logger.info(f"{cat.id} ({cat.name}) -> {contiguous_cat_id}") |
|
|
|
|
|
def _maybe_create_general_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: |
|
def has_annotations(instance: Instance) -> bool: |
|
return "annotations" in instance |
|
|
|
def has_only_crowd_anotations(instance: Instance) -> bool: |
|
for ann in instance["annotations"]: |
|
if ann.get("is_crowd", 0) == 0: |
|
return False |
|
return True |
|
|
|
def general_keep_instance_predicate(instance: Instance) -> bool: |
|
return has_annotations(instance) and not has_only_crowd_anotations(instance) |
|
|
|
if not cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS: |
|
return None |
|
return general_keep_instance_predicate |
|
|
|
|
|
def _maybe_create_keypoints_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: |
|
|
|
min_num_keypoints = cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE |
|
|
|
def has_sufficient_num_keypoints(instance: Instance) -> bool: |
|
num_kpts = sum( |
|
(np.array(ann["keypoints"][2::3]) > 0).sum() |
|
for ann in instance["annotations"] |
|
if "keypoints" in ann |
|
) |
|
return num_kpts >= min_num_keypoints |
|
|
|
if cfg.MODEL.KEYPOINT_ON and (min_num_keypoints > 0): |
|
return has_sufficient_num_keypoints |
|
return None |
|
|
|
|
|
def _maybe_create_mask_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: |
|
if not cfg.MODEL.MASK_ON: |
|
return None |
|
|
|
def has_mask_annotations(instance: Instance) -> bool: |
|
return any("segmentation" in ann for ann in instance["annotations"]) |
|
|
|
return has_mask_annotations |
|
|
|
|
|
def _maybe_create_densepose_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: |
|
if not cfg.MODEL.DENSEPOSE_ON: |
|
return None |
|
|
|
use_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS |
|
|
|
def has_densepose_annotations(instance: Instance) -> bool: |
|
for ann in instance["annotations"]: |
|
if all(key in ann for key in DENSEPOSE_IUV_KEYS_WITHOUT_MASK) or all( |
|
key in ann for key in DENSEPOSE_CSE_KEYS_WITHOUT_MASK |
|
): |
|
return True |
|
if use_masks and "segmentation" in ann: |
|
return True |
|
return False |
|
|
|
return has_densepose_annotations |
|
|
|
|
|
def _maybe_create_specific_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: |
|
specific_predicate_creators = [ |
|
_maybe_create_keypoints_keep_instance_predicate, |
|
_maybe_create_mask_keep_instance_predicate, |
|
_maybe_create_densepose_keep_instance_predicate, |
|
] |
|
predicates = [creator(cfg) for creator in specific_predicate_creators] |
|
predicates = [p for p in predicates if p is not None] |
|
if not predicates: |
|
return None |
|
|
|
def combined_predicate(instance: Instance) -> bool: |
|
return any(p(instance) for p in predicates) |
|
|
|
return combined_predicate |
|
|
|
|
|
def _get_train_keep_instance_predicate(cfg: CfgNode): |
|
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg) |
|
combined_specific_keep_predicate = _maybe_create_specific_keep_instance_predicate(cfg) |
|
|
|
def combined_general_specific_keep_predicate(instance: Instance) -> bool: |
|
return general_keep_predicate(instance) and combined_specific_keep_predicate(instance) |
|
|
|
if (general_keep_predicate is None) and (combined_specific_keep_predicate is None): |
|
return None |
|
if general_keep_predicate is None: |
|
return combined_specific_keep_predicate |
|
if combined_specific_keep_predicate is None: |
|
return general_keep_predicate |
|
return combined_general_specific_keep_predicate |
|
|
|
|
|
def _get_test_keep_instance_predicate(cfg: CfgNode): |
|
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg) |
|
return general_keep_predicate |
|
|
|
|
|
def _maybe_filter_and_map_categories( |
|
dataset_name: str, dataset_dicts: List[Instance] |
|
) -> List[Instance]: |
|
meta = MetadataCatalog.get(dataset_name) |
|
category_id_map = meta.thing_dataset_id_to_contiguous_id |
|
filtered_dataset_dicts = [] |
|
for dataset_dict in dataset_dicts: |
|
anns = [] |
|
for ann in dataset_dict["annotations"]: |
|
cat_id = ann["category_id"] |
|
if cat_id not in category_id_map: |
|
continue |
|
ann["category_id"] = category_id_map[cat_id] |
|
anns.append(ann) |
|
dataset_dict["annotations"] = anns |
|
filtered_dataset_dicts.append(dataset_dict) |
|
return filtered_dataset_dicts |
|
|
|
|
|
def _add_category_whitelists_to_metadata(cfg: CfgNode) -> None: |
|
for dataset_name, whitelisted_cat_ids in cfg.DATASETS.WHITELISTED_CATEGORIES.items(): |
|
meta = MetadataCatalog.get(dataset_name) |
|
meta.whitelisted_categories = whitelisted_cat_ids |
|
logger = logging.getLogger(__name__) |
|
logger.info( |
|
"Whitelisted categories for dataset {}: {}".format( |
|
dataset_name, meta.whitelisted_categories |
|
) |
|
) |
|
|
|
|
|
def _add_category_maps_to_metadata(cfg: CfgNode) -> None: |
|
for dataset_name, category_map in cfg.DATASETS.CATEGORY_MAPS.items(): |
|
category_map = { |
|
int(cat_id_src): int(cat_id_dst) for cat_id_src, cat_id_dst in category_map.items() |
|
} |
|
meta = MetadataCatalog.get(dataset_name) |
|
meta.category_map = category_map |
|
logger = logging.getLogger(__name__) |
|
logger.info("Category maps for dataset {}: {}".format(dataset_name, meta.category_map)) |
|
|
|
|
|
def _add_category_info_to_bootstrapping_metadata(dataset_name: str, dataset_cfg: CfgNode) -> None: |
|
meta = MetadataCatalog.get(dataset_name) |
|
meta.category_to_class_mapping = get_category_to_class_mapping(dataset_cfg) |
|
meta.categories = dataset_cfg.CATEGORIES |
|
meta.max_count_per_category = dataset_cfg.MAX_COUNT_PER_CATEGORY |
|
logger = logging.getLogger(__name__) |
|
logger.info( |
|
"Category to class mapping for dataset {}: {}".format( |
|
dataset_name, meta.category_to_class_mapping |
|
) |
|
) |
|
|
|
|
|
def _maybe_add_class_to_mesh_name_map_to_metadata(dataset_names: List[str], cfg: CfgNode) -> None: |
|
for dataset_name in dataset_names: |
|
meta = MetadataCatalog.get(dataset_name) |
|
if not hasattr(meta, "class_to_mesh_name"): |
|
meta.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) |
|
|
|
|
|
def _merge_categories(dataset_names: Collection[str]) -> _MergedCategoriesT: |
|
merged_categories = defaultdict(list) |
|
category_names = {} |
|
for dataset_name in dataset_names: |
|
meta = MetadataCatalog.get(dataset_name) |
|
whitelisted_categories = meta.get("whitelisted_categories") |
|
category_map = meta.get("category_map", {}) |
|
cat_ids = ( |
|
whitelisted_categories if whitelisted_categories is not None else meta.categories.keys() |
|
) |
|
for cat_id in cat_ids: |
|
cat_name = meta.categories[cat_id] |
|
cat_id_mapped = category_map.get(cat_id, cat_id) |
|
if cat_id_mapped == cat_id or cat_id_mapped in cat_ids: |
|
category_names[cat_id] = cat_name |
|
else: |
|
category_names[cat_id] = str(cat_id_mapped) |
|
|
|
|
|
|
|
cat_name_mapped = meta.categories[cat_id_mapped] |
|
merged_categories[cat_id_mapped].append( |
|
_DatasetCategory( |
|
id=cat_id, |
|
name=cat_name, |
|
mapped_id=cat_id_mapped, |
|
mapped_name=cat_name_mapped, |
|
dataset_name=dataset_name, |
|
) |
|
) |
|
|
|
for cat_id, categories in merged_categories.items(): |
|
for cat in categories: |
|
if cat_id in category_names and cat.mapped_name != category_names[cat_id]: |
|
cat.mapped_name = category_names[cat_id] |
|
|
|
return merged_categories |
|
|
|
|
|
def _warn_if_merged_different_categories(merged_categories: _MergedCategoriesT) -> None: |
|
logger = logging.getLogger(__name__) |
|
for cat_id in merged_categories: |
|
merged_categories_i = merged_categories[cat_id] |
|
first_cat_name = merged_categories_i[0].name |
|
if len(merged_categories_i) > 1 and not all( |
|
cat.name == first_cat_name for cat in merged_categories_i[1:] |
|
): |
|
cat_summary_str = ", ".join( |
|
[f"{cat.id} ({cat.name}) from {cat.dataset_name}" for cat in merged_categories_i] |
|
) |
|
logger.warning( |
|
f"Merged category {cat_id} corresponds to the following categories: " |
|
f"{cat_summary_str}" |
|
) |
|
|
|
|
|
def combine_detection_dataset_dicts( |
|
dataset_names: Collection[str], |
|
keep_instance_predicate: Optional[InstancePredicate] = None, |
|
proposal_files: Optional[Collection[str]] = None, |
|
) -> List[Instance]: |
|
""" |
|
Load and prepare dataset dicts for training / testing |
|
|
|
Args: |
|
dataset_names (Collection[str]): a list of dataset names |
|
keep_instance_predicate (Callable: Dict[str, Any] -> bool): predicate |
|
applied to instance dicts which defines whether to keep the instance |
|
proposal_files (Collection[str]): if given, a list of object proposal files |
|
that match each dataset in `dataset_names`. |
|
""" |
|
assert len(dataset_names) |
|
if proposal_files is None: |
|
proposal_files = [None] * len(dataset_names) |
|
assert len(dataset_names) == len(proposal_files) |
|
|
|
dataset_name_to_dicts = {} |
|
for dataset_name in dataset_names: |
|
dataset_name_to_dicts[dataset_name] = DatasetCatalog.get(dataset_name) |
|
assert len(dataset_name_to_dicts), f"Dataset '{dataset_name}' is empty!" |
|
|
|
|
|
merged_categories = _merge_categories(dataset_names) |
|
_warn_if_merged_different_categories(merged_categories) |
|
merged_category_names = [ |
|
merged_categories[cat_id][0].mapped_name for cat_id in sorted(merged_categories) |
|
] |
|
|
|
_add_category_id_to_contiguous_id_maps_to_metadata(merged_categories) |
|
|
|
for dataset_name, proposal_file in zip(dataset_names, proposal_files): |
|
dataset_dicts = dataset_name_to_dicts[dataset_name] |
|
assert len(dataset_dicts), f"Dataset '{dataset_name}' is empty!" |
|
if proposal_file is not None: |
|
dataset_dicts = load_proposals_into_dataset(dataset_dicts, proposal_file) |
|
dataset_dicts = _maybe_filter_and_map_categories(dataset_name, dataset_dicts) |
|
print_instances_class_histogram(dataset_dicts, merged_category_names) |
|
dataset_name_to_dicts[dataset_name] = dataset_dicts |
|
|
|
if keep_instance_predicate is not None: |
|
all_datasets_dicts_plain = [ |
|
d |
|
for d in itertools.chain.from_iterable(dataset_name_to_dicts.values()) |
|
if keep_instance_predicate(d) |
|
] |
|
else: |
|
all_datasets_dicts_plain = list( |
|
itertools.chain.from_iterable(dataset_name_to_dicts.values()) |
|
) |
|
return all_datasets_dicts_plain |
|
|
|
|
|
def build_detection_train_loader(cfg: CfgNode, mapper=None): |
|
""" |
|
A data loader is created in a way similar to that of Detectron2. |
|
The main differences are: |
|
- it allows to combine datasets with different but compatible object category sets |
|
|
|
The data loader is created by the following steps: |
|
1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts. |
|
2. Start workers to work on the dicts. Each worker will: |
|
* Map each metadata dict into another format to be consumed by the model. |
|
* Batch them by simply putting dicts into a list. |
|
The batched ``list[mapped_dict]`` is what this dataloader will return. |
|
|
|
Args: |
|
cfg (CfgNode): the config |
|
mapper (callable): a callable which takes a sample (dict) from dataset and |
|
returns the format to be consumed by the model. |
|
By default it will be `DatasetMapper(cfg, True)`. |
|
|
|
Returns: |
|
an infinite iterator of training data |
|
""" |
|
|
|
_add_category_whitelists_to_metadata(cfg) |
|
_add_category_maps_to_metadata(cfg) |
|
_maybe_add_class_to_mesh_name_map_to_metadata(cfg.DATASETS.TRAIN, cfg) |
|
dataset_dicts = combine_detection_dataset_dicts( |
|
cfg.DATASETS.TRAIN, |
|
keep_instance_predicate=_get_train_keep_instance_predicate(cfg), |
|
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, |
|
) |
|
if mapper is None: |
|
mapper = DatasetMapper(cfg, True) |
|
return d2_build_detection_train_loader(cfg, dataset=dataset_dicts, mapper=mapper) |
|
|
|
|
|
def build_detection_test_loader(cfg, dataset_name, mapper=None): |
|
""" |
|
Similar to `build_detection_train_loader`. |
|
But this function uses the given `dataset_name` argument (instead of the names in cfg), |
|
and uses batch size 1. |
|
|
|
Args: |
|
cfg: a detectron2 CfgNode |
|
dataset_name (str): a name of the dataset that's available in the DatasetCatalog |
|
mapper (callable): a callable which takes a sample (dict) from dataset |
|
and returns the format to be consumed by the model. |
|
By default it will be `DatasetMapper(cfg, False)`. |
|
|
|
Returns: |
|
DataLoader: a torch DataLoader, that loads the given detection |
|
dataset, with test-time transformation and batching. |
|
""" |
|
_add_category_whitelists_to_metadata(cfg) |
|
_add_category_maps_to_metadata(cfg) |
|
_maybe_add_class_to_mesh_name_map_to_metadata([dataset_name], cfg) |
|
dataset_dicts = combine_detection_dataset_dicts( |
|
[dataset_name], |
|
keep_instance_predicate=_get_test_keep_instance_predicate(cfg), |
|
proposal_files=[ |
|
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)] |
|
] |
|
if cfg.MODEL.LOAD_PROPOSALS |
|
else None, |
|
) |
|
sampler = None |
|
if not cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE: |
|
sampler = torch.utils.data.SequentialSampler(dataset_dicts) |
|
if mapper is None: |
|
mapper = DatasetMapper(cfg, False) |
|
return d2_build_detection_test_loader( |
|
dataset_dicts, mapper=mapper, num_workers=cfg.DATALOADER.NUM_WORKERS, sampler=sampler |
|
) |
|
|
|
|
|
def build_frame_selector(cfg: CfgNode): |
|
strategy = FrameSelectionStrategy(cfg.STRATEGY) |
|
if strategy == FrameSelectionStrategy.RANDOM_K: |
|
frame_selector = RandomKFramesSelector(cfg.NUM_IMAGES) |
|
elif strategy == FrameSelectionStrategy.FIRST_K: |
|
frame_selector = FirstKFramesSelector(cfg.NUM_IMAGES) |
|
elif strategy == FrameSelectionStrategy.LAST_K: |
|
frame_selector = LastKFramesSelector(cfg.NUM_IMAGES) |
|
elif strategy == FrameSelectionStrategy.ALL: |
|
frame_selector = None |
|
|
|
return frame_selector |
|
|
|
|
|
def build_transform(cfg: CfgNode, data_type: str): |
|
if cfg.TYPE == "resize": |
|
if data_type == "image": |
|
return ImageResizeTransform(cfg.MIN_SIZE, cfg.MAX_SIZE) |
|
raise ValueError(f"Unknown transform {cfg.TYPE} for data type {data_type}") |
|
|
|
|
|
def build_combined_loader(cfg: CfgNode, loaders: Collection[Loader], ratios: Sequence[float]): |
|
images_per_worker = _compute_num_images_per_worker(cfg) |
|
return CombinedDataLoader(loaders, images_per_worker, ratios) |
|
|
|
|
|
def build_bootstrap_dataset(dataset_name: str, cfg: CfgNode) -> Sequence[torch.Tensor]: |
|
""" |
|
Build dataset that provides data to bootstrap on |
|
|
|
Args: |
|
dataset_name (str): Name of the dataset, needs to have associated metadata |
|
to load the data |
|
cfg (CfgNode): bootstrapping config |
|
Returns: |
|
Sequence[Tensor] - dataset that provides image batches, Tensors of size |
|
[N, C, H, W] of type float32 |
|
""" |
|
logger = logging.getLogger(__name__) |
|
_add_category_info_to_bootstrapping_metadata(dataset_name, cfg) |
|
meta = MetadataCatalog.get(dataset_name) |
|
factory = BootstrapDatasetFactoryCatalog.get(meta.dataset_type) |
|
dataset = None |
|
if factory is not None: |
|
dataset = factory(meta, cfg) |
|
if dataset is None: |
|
logger.warning(f"Failed to create dataset {dataset_name} of type {meta.dataset_type}") |
|
return dataset |
|
|
|
|
|
def build_data_sampler(cfg: CfgNode, sampler_cfg: CfgNode, embedder: Optional[torch.nn.Module]): |
|
if sampler_cfg.TYPE == "densepose_uniform": |
|
data_sampler = PredictionToGroundTruthSampler() |
|
|
|
data_sampler.register_sampler( |
|
"pred_densepose", |
|
"gt_densepose", |
|
DensePoseUniformSampler(count_per_class=sampler_cfg.COUNT_PER_CLASS), |
|
) |
|
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) |
|
return data_sampler |
|
elif sampler_cfg.TYPE == "densepose_UV_confidence": |
|
data_sampler = PredictionToGroundTruthSampler() |
|
|
|
data_sampler.register_sampler( |
|
"pred_densepose", |
|
"gt_densepose", |
|
DensePoseConfidenceBasedSampler( |
|
confidence_channel="sigma_2", |
|
count_per_class=sampler_cfg.COUNT_PER_CLASS, |
|
search_proportion=0.5, |
|
), |
|
) |
|
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) |
|
return data_sampler |
|
elif sampler_cfg.TYPE == "densepose_fine_segm_confidence": |
|
data_sampler = PredictionToGroundTruthSampler() |
|
|
|
data_sampler.register_sampler( |
|
"pred_densepose", |
|
"gt_densepose", |
|
DensePoseConfidenceBasedSampler( |
|
confidence_channel="fine_segm_confidence", |
|
count_per_class=sampler_cfg.COUNT_PER_CLASS, |
|
search_proportion=0.5, |
|
), |
|
) |
|
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) |
|
return data_sampler |
|
elif sampler_cfg.TYPE == "densepose_coarse_segm_confidence": |
|
data_sampler = PredictionToGroundTruthSampler() |
|
|
|
data_sampler.register_sampler( |
|
"pred_densepose", |
|
"gt_densepose", |
|
DensePoseConfidenceBasedSampler( |
|
confidence_channel="coarse_segm_confidence", |
|
count_per_class=sampler_cfg.COUNT_PER_CLASS, |
|
search_proportion=0.5, |
|
), |
|
) |
|
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) |
|
return data_sampler |
|
elif sampler_cfg.TYPE == "densepose_cse_uniform": |
|
assert embedder is not None |
|
data_sampler = PredictionToGroundTruthSampler() |
|
|
|
data_sampler.register_sampler( |
|
"pred_densepose", |
|
"gt_densepose", |
|
DensePoseCSEUniformSampler( |
|
cfg=cfg, |
|
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES, |
|
embedder=embedder, |
|
count_per_class=sampler_cfg.COUNT_PER_CLASS, |
|
), |
|
) |
|
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) |
|
return data_sampler |
|
elif sampler_cfg.TYPE == "densepose_cse_coarse_segm_confidence": |
|
assert embedder is not None |
|
data_sampler = PredictionToGroundTruthSampler() |
|
|
|
data_sampler.register_sampler( |
|
"pred_densepose", |
|
"gt_densepose", |
|
DensePoseCSEConfidenceBasedSampler( |
|
cfg=cfg, |
|
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES, |
|
embedder=embedder, |
|
confidence_channel="coarse_segm_confidence", |
|
count_per_class=sampler_cfg.COUNT_PER_CLASS, |
|
search_proportion=0.5, |
|
), |
|
) |
|
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) |
|
return data_sampler |
|
|
|
raise ValueError(f"Unknown data sampler type {sampler_cfg.TYPE}") |
|
|
|
|
|
def build_data_filter(cfg: CfgNode): |
|
if cfg.TYPE == "detection_score": |
|
min_score = cfg.MIN_VALUE |
|
return ScoreBasedFilter(min_score=min_score) |
|
raise ValueError(f"Unknown data filter type {cfg.TYPE}") |
|
|
|
|
|
def build_inference_based_loader( |
|
cfg: CfgNode, |
|
dataset_cfg: CfgNode, |
|
model: torch.nn.Module, |
|
embedder: Optional[torch.nn.Module] = None, |
|
) -> InferenceBasedLoader: |
|
""" |
|
Constructs data loader based on inference results of a model. |
|
""" |
|
dataset = build_bootstrap_dataset(dataset_cfg.DATASET, dataset_cfg.IMAGE_LOADER) |
|
meta = MetadataCatalog.get(dataset_cfg.DATASET) |
|
training_sampler = TrainingSampler(len(dataset)) |
|
data_loader = torch.utils.data.DataLoader( |
|
dataset, |
|
batch_size=dataset_cfg.IMAGE_LOADER.BATCH_SIZE, |
|
sampler=training_sampler, |
|
num_workers=dataset_cfg.IMAGE_LOADER.NUM_WORKERS, |
|
collate_fn=trivial_batch_collator, |
|
worker_init_fn=worker_init_reset_seed, |
|
) |
|
return InferenceBasedLoader( |
|
model, |
|
data_loader=data_loader, |
|
data_sampler=build_data_sampler(cfg, dataset_cfg.DATA_SAMPLER, embedder), |
|
data_filter=build_data_filter(dataset_cfg.FILTER), |
|
shuffle=True, |
|
batch_size=dataset_cfg.INFERENCE.OUTPUT_BATCH_SIZE, |
|
inference_batch_size=dataset_cfg.INFERENCE.INPUT_BATCH_SIZE, |
|
category_to_class_mapping=meta.category_to_class_mapping, |
|
) |
|
|
|
|
|
def has_inference_based_loaders(cfg: CfgNode) -> bool: |
|
""" |
|
Returns True, if at least one inferense-based loader must |
|
be instantiated for training |
|
""" |
|
return len(cfg.BOOTSTRAP_DATASETS) > 0 |
|
|
|
|
|
def build_inference_based_loaders( |
|
cfg: CfgNode, model: torch.nn.Module |
|
) -> Tuple[List[InferenceBasedLoader], List[float]]: |
|
loaders = [] |
|
ratios = [] |
|
embedder = build_densepose_embedder(cfg).to(device=model.device) |
|
for dataset_spec in cfg.BOOTSTRAP_DATASETS: |
|
dataset_cfg = get_bootstrap_dataset_config().clone() |
|
dataset_cfg.merge_from_other_cfg(CfgNode(dataset_spec)) |
|
loader = build_inference_based_loader(cfg, dataset_cfg, model, embedder) |
|
loaders.append(loader) |
|
ratios.append(dataset_cfg.RATIO) |
|
return loaders, ratios |
|
|
|
|
|
def build_video_list_dataset(meta: Metadata, cfg: CfgNode): |
|
video_list_fpath = meta.video_list_fpath |
|
video_base_path = meta.video_base_path |
|
category = meta.category |
|
if cfg.TYPE == "video_keyframe": |
|
frame_selector = build_frame_selector(cfg.SELECT) |
|
transform = build_transform(cfg.TRANSFORM, data_type="image") |
|
video_list = video_list_from_file(video_list_fpath, video_base_path) |
|
keyframe_helper_fpath = getattr(cfg, "KEYFRAME_HELPER", None) |
|
return VideoKeyframeDataset( |
|
video_list, category, frame_selector, transform, keyframe_helper_fpath |
|
) |
|
|
|
|
|
class _BootstrapDatasetFactoryCatalog(UserDict): |
|
""" |
|
A global dictionary that stores information about bootstrapped datasets creation functions |
|
from metadata and config, for diverse DatasetType |
|
""" |
|
|
|
def register(self, dataset_type: DatasetType, factory: Callable[[Metadata, CfgNode], Dataset]): |
|
""" |
|
Args: |
|
dataset_type (DatasetType): a DatasetType e.g. DatasetType.VIDEO_LIST |
|
factory (Callable[Metadata, CfgNode]): a callable which takes Metadata and cfg |
|
arguments and returns a dataset object. |
|
""" |
|
assert dataset_type not in self, "Dataset '{}' is already registered!".format(dataset_type) |
|
self[dataset_type] = factory |
|
|
|
|
|
BootstrapDatasetFactoryCatalog = _BootstrapDatasetFactoryCatalog() |
|
BootstrapDatasetFactoryCatalog.register(DatasetType.VIDEO_LIST, build_video_list_dataset) |
|
|