|
|
|
|
|
|
|
import logging |
|
import numpy as np |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import torch |
|
from torch.utils.data.dataset import Dataset |
|
|
|
from detectron2.data.detection_utils import read_image |
|
|
|
ImageTransform = Callable[[torch.Tensor], torch.Tensor] |
|
|
|
|
|
class ImageListDataset(Dataset): |
|
""" |
|
Dataset that provides images from a list. |
|
""" |
|
|
|
_EMPTY_IMAGE = torch.empty((0, 3, 1, 1)) |
|
|
|
def __init__( |
|
self, |
|
image_list: List[str], |
|
category_list: Union[str, List[str], None] = None, |
|
transform: Optional[ImageTransform] = None, |
|
): |
|
""" |
|
Args: |
|
image_list (List[str]): list of paths to image files |
|
category_list (Union[str, List[str], None]): list of animal categories for |
|
each image. If it is a string, or None, this applies to all images |
|
""" |
|
if type(category_list) == list: |
|
self.category_list = category_list |
|
else: |
|
self.category_list = [category_list] * len(image_list) |
|
assert len(image_list) == len( |
|
self.category_list |
|
), "length of image and category lists must be equal" |
|
self.image_list = image_list |
|
self.transform = transform |
|
|
|
def __getitem__(self, idx: int) -> Dict[str, Any]: |
|
""" |
|
Gets selected images from the list |
|
|
|
Args: |
|
idx (int): video index in the video list file |
|
Returns: |
|
A dictionary containing two keys: |
|
images (torch.Tensor): tensor of size [N, 3, H, W] (N = 1, or 0 for _EMPTY_IMAGE) |
|
categories (List[str]): categories of the frames |
|
""" |
|
categories = [self.category_list[idx]] |
|
fpath = self.image_list[idx] |
|
transform = self.transform |
|
|
|
try: |
|
image = torch.from_numpy(np.ascontiguousarray(read_image(fpath, format="BGR"))) |
|
image = image.permute(2, 0, 1).unsqueeze(0).float() |
|
if transform is not None: |
|
image = transform(image) |
|
return {"images": image, "categories": categories} |
|
except (OSError, RuntimeError) as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning(f"Error opening image file container {fpath}: {e}") |
|
|
|
return {"images": self._EMPTY_IMAGE, "categories": []} |
|
|
|
def __len__(self): |
|
return len(self.image_list) |
|
|