|
|
|
|
|
from typing import Any |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import CfgNode |
|
from detectron2.layers import ConvTranspose2d |
|
|
|
from ...structures import decorate_predictor_output_class_with_confidences |
|
from ..confidence import DensePoseConfidenceModelConfig, DensePoseUVConfidenceType |
|
from ..utils import initialize_module_params |
|
|
|
|
|
class DensePoseChartConfidencePredictorMixin: |
|
""" |
|
Predictor contains the last layers of a DensePose model that take DensePose head |
|
outputs as an input and produce model outputs. Confidence predictor mixin is used |
|
to generate confidences for segmentation and UV tensors estimated by some |
|
base predictor. Several assumptions need to hold for the base predictor: |
|
1) the `forward` method must return SIUV tuple as the first result ( |
|
S = coarse segmentation, I = fine segmentation, U and V are intrinsic |
|
chart coordinates) |
|
2) `interp2d` method must be defined to perform bilinear interpolation; |
|
the same method is typically used for SIUV and confidences |
|
Confidence predictor mixin provides confidence estimates, as described in: |
|
N. Neverova et al., Correlated Uncertainty for Learning Dense Correspondences |
|
from Noisy Labels, NeurIPS 2019 |
|
A. Sanakoyeu et al., Transferring Dense Pose to Proximal Animal Classes, CVPR 2020 |
|
""" |
|
|
|
def __init__(self, cfg: CfgNode, input_channels: int): |
|
""" |
|
Initialize confidence predictor using configuration options. |
|
|
|
Args: |
|
cfg (CfgNode): configuration options |
|
input_channels (int): number of input channels |
|
""" |
|
|
|
super().__init__(cfg, input_channels) |
|
self.confidence_model_cfg = DensePoseConfidenceModelConfig.from_cfg(cfg) |
|
self._initialize_confidence_estimation_layers(cfg, input_channels) |
|
self._registry = {} |
|
initialize_module_params(self) |
|
|
|
def _initialize_confidence_estimation_layers(self, cfg: CfgNode, dim_in: int): |
|
""" |
|
Initialize confidence estimation layers based on configuration options |
|
|
|
Args: |
|
cfg (CfgNode): configuration options |
|
dim_in (int): number of input channels |
|
""" |
|
dim_out_patches = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_PATCHES + 1 |
|
kernel_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECONV_KERNEL |
|
if self.confidence_model_cfg.uv_confidence.enabled: |
|
if self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.IID_ISO: |
|
self.sigma_2_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
elif ( |
|
self.confidence_model_cfg.uv_confidence.type |
|
== DensePoseUVConfidenceType.INDEP_ANISO |
|
): |
|
self.sigma_2_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
self.kappa_u_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
self.kappa_v_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unknown confidence model type: " |
|
f"{self.confidence_model_cfg.confidence_model_type}" |
|
) |
|
if self.confidence_model_cfg.segm_confidence.enabled: |
|
self.fine_segm_confidence_lowres = ConvTranspose2d( |
|
dim_in, 1, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
self.coarse_segm_confidence_lowres = ConvTranspose2d( |
|
dim_in, 1, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
|
|
def forward(self, head_outputs: torch.Tensor): |
|
""" |
|
Perform forward operation on head outputs used as inputs for the predictor. |
|
Calls forward method from the base predictor and uses its outputs to compute |
|
confidences. |
|
|
|
Args: |
|
head_outputs (Tensor): head outputs used as predictor inputs |
|
Return: |
|
An instance of outputs with confidences, |
|
see `decorate_predictor_output_class_with_confidences` |
|
""" |
|
|
|
base_predictor_outputs = super().forward(head_outputs) |
|
|
|
|
|
output = self._create_output_instance(base_predictor_outputs) |
|
|
|
if self.confidence_model_cfg.uv_confidence.enabled: |
|
if self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.IID_ISO: |
|
|
|
output.sigma_2 = self.interp2d(self.sigma_2_lowres(head_outputs)) |
|
elif ( |
|
self.confidence_model_cfg.uv_confidence.type |
|
== DensePoseUVConfidenceType.INDEP_ANISO |
|
): |
|
|
|
output.sigma_2 = self.interp2d(self.sigma_2_lowres(head_outputs)) |
|
output.kappa_u = self.interp2d(self.kappa_u_lowres(head_outputs)) |
|
output.kappa_v = self.interp2d(self.kappa_v_lowres(head_outputs)) |
|
else: |
|
raise ValueError( |
|
f"Unknown confidence model type: " |
|
f"{self.confidence_model_cfg.confidence_model_type}" |
|
) |
|
if self.confidence_model_cfg.segm_confidence.enabled: |
|
|
|
|
|
output.fine_segm_confidence = ( |
|
F.softplus( |
|
self.interp2d(self.fine_segm_confidence_lowres(head_outputs)) |
|
) |
|
+ self.confidence_model_cfg.segm_confidence.epsilon |
|
) |
|
output.fine_segm = base_predictor_outputs.fine_segm * torch.repeat_interleave( |
|
output.fine_segm_confidence, base_predictor_outputs.fine_segm.shape[1], dim=1 |
|
) |
|
output.coarse_segm_confidence = ( |
|
F.softplus( |
|
self.interp2d( |
|
self.coarse_segm_confidence_lowres(head_outputs) |
|
) |
|
) |
|
+ self.confidence_model_cfg.segm_confidence.epsilon |
|
) |
|
output.coarse_segm = base_predictor_outputs.coarse_segm * torch.repeat_interleave( |
|
output.coarse_segm_confidence, base_predictor_outputs.coarse_segm.shape[1], dim=1 |
|
) |
|
|
|
return output |
|
|
|
def _create_output_instance(self, base_predictor_outputs: Any): |
|
""" |
|
Create an instance of predictor outputs by copying the outputs from the |
|
base predictor and initializing confidence |
|
|
|
Args: |
|
base_predictor_outputs: an instance of base predictor outputs |
|
(the outputs type is assumed to be a dataclass) |
|
Return: |
|
An instance of outputs with confidences |
|
""" |
|
PredictorOutput = decorate_predictor_output_class_with_confidences( |
|
type(base_predictor_outputs) |
|
) |
|
|
|
|
|
output = PredictorOutput( |
|
**base_predictor_outputs.__dict__, |
|
coarse_segm_confidence=None, |
|
fine_segm_confidence=None, |
|
sigma_1=None, |
|
sigma_2=None, |
|
kappa_u=None, |
|
kappa_v=None, |
|
) |
|
return output |
|
|