|
|
|
import contextlib |
|
import copy |
|
import io |
|
import itertools |
|
import json |
|
import logging |
|
import numpy as np |
|
import os |
|
import pickle |
|
from collections import OrderedDict |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
from tabulate import tabulate |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.config import CfgNode |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.data.datasets.coco import convert_to_coco_json |
|
from detectron2.structures import Boxes, BoxMode, pairwise_iou |
|
from detectron2.utils.file_io import PathManager |
|
from detectron2.utils.logger import create_small_table |
|
|
|
from .evaluator import DatasetEvaluator |
|
|
|
try: |
|
from detectron2.evaluation.fast_eval_api import COCOeval_opt |
|
except ImportError: |
|
COCOeval_opt = COCOeval |
|
|
|
|
|
class COCOEvaluator(DatasetEvaluator): |
|
""" |
|
Evaluate AR for object proposals, AP for instance detection/segmentation, AP |
|
for keypoint detection outputs using COCO's metrics. |
|
See http://cocodataset.org/#detection-eval and |
|
http://cocodataset.org/#keypoints-eval to understand its metrics. |
|
The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means |
|
the metric cannot be computed (e.g. due to no predictions made). |
|
|
|
In addition to COCO, this evaluator is able to support any bounding box detection, |
|
instance segmentation, or keypoint detection dataset. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset_name, |
|
tasks=None, |
|
distributed=True, |
|
output_dir=None, |
|
*, |
|
max_dets_per_image=None, |
|
use_fast_impl=True, |
|
kpt_oks_sigmas=(), |
|
allow_cached_coco=True, |
|
): |
|
""" |
|
Args: |
|
dataset_name (str): name of the dataset to be evaluated. |
|
It must have either the following corresponding metadata: |
|
|
|
"json_file": the path to the COCO format annotation |
|
|
|
Or it must be in detectron2's standard dataset format |
|
so it can be converted to COCO format automatically. |
|
tasks (tuple[str]): tasks that can be evaluated under the given |
|
configuration. A task is one of "bbox", "segm", "keypoints". |
|
By default, will infer this automatically from predictions. |
|
distributed (True): if True, will collect results from all ranks and run evaluation |
|
in the main process. |
|
Otherwise, will only evaluate the results in the current process. |
|
output_dir (str): optional, an output directory to dump all |
|
results predicted on the dataset. The dump contains two files: |
|
|
|
1. "instances_predictions.pth" a file that can be loaded with `torch.load` and |
|
contains all the results in the format they are produced by the model. |
|
2. "coco_instances_results.json" a json file in COCO's result format. |
|
max_dets_per_image (int): limit on the maximum number of detections per image. |
|
By default in COCO, this limit is to 100, but this can be customized |
|
to be greater, as is needed in evaluation metrics AP fixed and AP pool |
|
(see https://arxiv.org/pdf/2102.01066.pdf) |
|
This doesn't affect keypoint evaluation. |
|
use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. |
|
Although the results should be very close to the official implementation in COCO |
|
API, it is still recommended to compute results with the official API for use in |
|
papers. The faster implementation also uses more RAM. |
|
kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. |
|
See http://cocodataset.org/#keypoints-eval |
|
When empty, it will use the defaults in COCO. |
|
Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. |
|
allow_cached_coco (bool): Whether to use cached coco json from previous validation |
|
runs. You should set this to False if you need to use different validation data. |
|
Defaults to True. |
|
""" |
|
self._logger = logging.getLogger(__name__) |
|
self._distributed = distributed |
|
self._output_dir = output_dir |
|
|
|
if use_fast_impl and (COCOeval_opt is COCOeval): |
|
self._logger.info("Fast COCO eval is not built. Falling back to official COCO eval.") |
|
use_fast_impl = False |
|
self._use_fast_impl = use_fast_impl |
|
|
|
|
|
|
|
|
|
|
|
|
|
if max_dets_per_image is None: |
|
max_dets_per_image = [1, 10, 100] |
|
else: |
|
max_dets_per_image = [1, 10, max_dets_per_image] |
|
self._max_dets_per_image = max_dets_per_image |
|
|
|
if tasks is not None and isinstance(tasks, CfgNode): |
|
kpt_oks_sigmas = ( |
|
tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas |
|
) |
|
self._logger.warn( |
|
"COCO Evaluator instantiated using config, this is deprecated behavior." |
|
" Please pass in explicit arguments instead." |
|
) |
|
self._tasks = None |
|
else: |
|
self._tasks = tasks |
|
|
|
self._cpu_device = torch.device("cpu") |
|
|
|
self._metadata = MetadataCatalog.get(dataset_name) |
|
if not hasattr(self._metadata, "json_file"): |
|
if output_dir is None: |
|
raise ValueError( |
|
"output_dir must be provided to COCOEvaluator " |
|
"for datasets not in COCO format." |
|
) |
|
self._logger.info(f"Trying to convert '{dataset_name}' to COCO format ...") |
|
|
|
cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") |
|
self._metadata.json_file = cache_path |
|
convert_to_coco_json(dataset_name, cache_path, allow_cached=allow_cached_coco) |
|
|
|
json_file = PathManager.get_local_path(self._metadata.json_file) |
|
with contextlib.redirect_stdout(io.StringIO()): |
|
self._coco_api = COCO(json_file) |
|
|
|
|
|
|
|
self._do_evaluation = "annotations" in self._coco_api.dataset |
|
if self._do_evaluation: |
|
self._kpt_oks_sigmas = kpt_oks_sigmas |
|
|
|
def reset(self): |
|
self._predictions = [] |
|
|
|
def process(self, inputs, outputs): |
|
""" |
|
Args: |
|
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). |
|
It is a list of dict. Each dict corresponds to an image and |
|
contains keys like "height", "width", "file_name", "image_id". |
|
outputs: the outputs of a COCO model. It is a list of dicts with key |
|
"instances" that contains :class:`Instances`. |
|
""" |
|
for input, output in zip(inputs, outputs): |
|
prediction = {"image_id": input["image_id"]} |
|
|
|
if "instances" in output: |
|
instances = output["instances"].to(self._cpu_device) |
|
prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) |
|
if "proposals" in output: |
|
prediction["proposals"] = output["proposals"].to(self._cpu_device) |
|
if len(prediction) > 1: |
|
self._predictions.append(prediction) |
|
|
|
def evaluate(self, img_ids=None): |
|
""" |
|
Args: |
|
img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset |
|
""" |
|
if self._distributed: |
|
comm.synchronize() |
|
predictions = comm.gather(self._predictions, dst=0) |
|
predictions = list(itertools.chain(*predictions)) |
|
|
|
if not comm.is_main_process(): |
|
return {} |
|
else: |
|
predictions = self._predictions |
|
|
|
if len(predictions) == 0: |
|
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") |
|
return {} |
|
|
|
if self._output_dir: |
|
PathManager.mkdirs(self._output_dir) |
|
file_path = os.path.join(self._output_dir, "instances_predictions.pth") |
|
with PathManager.open(file_path, "wb") as f: |
|
torch.save(predictions, f) |
|
|
|
self._results = OrderedDict() |
|
if "proposals" in predictions[0]: |
|
self._eval_box_proposals(predictions) |
|
if "instances" in predictions[0]: |
|
self._eval_predictions(predictions, img_ids=img_ids) |
|
|
|
return copy.deepcopy(self._results) |
|
|
|
def _tasks_from_predictions(self, predictions): |
|
""" |
|
Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. |
|
""" |
|
tasks = {"bbox"} |
|
for pred in predictions: |
|
if "segmentation" in pred: |
|
tasks.add("segm") |
|
if "keypoints" in pred: |
|
tasks.add("keypoints") |
|
return sorted(tasks) |
|
|
|
def _eval_predictions(self, predictions, img_ids=None): |
|
""" |
|
Evaluate predictions. Fill self._results with the metrics of the tasks. |
|
""" |
|
self._logger.info("Preparing results for COCO format ...") |
|
coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) |
|
tasks = self._tasks or self._tasks_from_predictions(coco_results) |
|
|
|
|
|
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): |
|
dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id |
|
all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) |
|
num_classes = len(all_contiguous_ids) |
|
assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 |
|
|
|
reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} |
|
for result in coco_results: |
|
category_id = result["category_id"] |
|
assert category_id < num_classes, ( |
|
f"A prediction has class={category_id}, " |
|
f"but the dataset only has {num_classes} classes and " |
|
f"predicted class id should be in [0, {num_classes - 1}]." |
|
) |
|
result["category_id"] = reverse_id_mapping[category_id] |
|
|
|
if self._output_dir: |
|
file_path = os.path.join(self._output_dir, "coco_instances_results.json") |
|
self._logger.info("Saving results to {}".format(file_path)) |
|
with PathManager.open(file_path, "w") as f: |
|
f.write(json.dumps(coco_results)) |
|
f.flush() |
|
|
|
if not self._do_evaluation: |
|
self._logger.info("Annotations are not available for evaluation.") |
|
return |
|
|
|
self._logger.info( |
|
"Evaluating predictions with {} COCO API...".format( |
|
"unofficial" if self._use_fast_impl else "official" |
|
) |
|
) |
|
for task in sorted(tasks): |
|
assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" |
|
coco_eval = ( |
|
_evaluate_predictions_on_coco( |
|
self._coco_api, |
|
coco_results, |
|
task, |
|
kpt_oks_sigmas=self._kpt_oks_sigmas, |
|
cocoeval_fn=COCOeval_opt if self._use_fast_impl else COCOeval, |
|
img_ids=img_ids, |
|
max_dets_per_image=self._max_dets_per_image, |
|
) |
|
if len(coco_results) > 0 |
|
else None |
|
) |
|
|
|
res = self._derive_coco_results( |
|
coco_eval, task, class_names=self._metadata.get("thing_classes") |
|
) |
|
self._results[task] = res |
|
|
|
def _eval_box_proposals(self, predictions): |
|
""" |
|
Evaluate the box proposals in predictions. |
|
Fill self._results with the metrics for "box_proposals" task. |
|
""" |
|
if self._output_dir: |
|
|
|
|
|
bbox_mode = BoxMode.XYXY_ABS.value |
|
ids, boxes, objectness_logits = [], [], [] |
|
for prediction in predictions: |
|
ids.append(prediction["image_id"]) |
|
boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) |
|
objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) |
|
|
|
proposal_data = { |
|
"boxes": boxes, |
|
"objectness_logits": objectness_logits, |
|
"ids": ids, |
|
"bbox_mode": bbox_mode, |
|
} |
|
with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: |
|
pickle.dump(proposal_data, f) |
|
|
|
if not self._do_evaluation: |
|
self._logger.info("Annotations are not available for evaluation.") |
|
return |
|
|
|
self._logger.info("Evaluating bbox proposals ...") |
|
res = {} |
|
areas = {"all": "", "small": "s", "medium": "m", "large": "l"} |
|
for limit in [100, 1000]: |
|
for area, suffix in areas.items(): |
|
stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) |
|
key = "AR{}@{:d}".format(suffix, limit) |
|
res[key] = float(stats["ar"].item() * 100) |
|
self._logger.info("Proposal metrics: \n" + create_small_table(res)) |
|
self._results["box_proposals"] = res |
|
|
|
def _derive_coco_results(self, coco_eval, iou_type, class_names=None): |
|
""" |
|
Derive the desired score numbers from summarized COCOeval. |
|
|
|
Args: |
|
coco_eval (None or COCOEval): None represents no predictions from model. |
|
iou_type (str): |
|
class_names (None or list[str]): if provided, will use it to predict |
|
per-category AP. |
|
|
|
Returns: |
|
a dict of {metric name: score} |
|
""" |
|
|
|
metrics = { |
|
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], |
|
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], |
|
"keypoints": ["AP", "AP50", "AP75", "APm", "APl"], |
|
}[iou_type] |
|
|
|
if coco_eval is None: |
|
self._logger.warn("No predictions from the model!") |
|
return {metric: float("nan") for metric in metrics} |
|
|
|
|
|
results = { |
|
metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") |
|
for idx, metric in enumerate(metrics) |
|
} |
|
self._logger.info( |
|
"Evaluation results for {}: \n".format(iou_type) + create_small_table(results) |
|
) |
|
if not np.isfinite(sum(results.values())): |
|
self._logger.info("Some metrics cannot be computed and is shown as NaN.") |
|
|
|
if class_names is None or len(class_names) <= 1: |
|
return results |
|
|
|
|
|
precisions = coco_eval.eval["precision"] |
|
|
|
assert len(class_names) == precisions.shape[2] |
|
|
|
results_per_category = [] |
|
for idx, name in enumerate(class_names): |
|
|
|
|
|
precision = precisions[:, :, idx, 0, -1] |
|
precision = precision[precision > -1] |
|
ap = np.mean(precision) if precision.size else float("nan") |
|
results_per_category.append(("{}".format(name), float(ap * 100))) |
|
|
|
|
|
N_COLS = min(6, len(results_per_category) * 2) |
|
results_flatten = list(itertools.chain(*results_per_category)) |
|
results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) |
|
table = tabulate( |
|
results_2d, |
|
tablefmt="pipe", |
|
floatfmt=".3f", |
|
headers=["category", "AP"] * (N_COLS // 2), |
|
numalign="left", |
|
) |
|
self._logger.info("Per-category {} AP: \n".format(iou_type) + table) |
|
|
|
results.update({"AP-" + name: ap for name, ap in results_per_category}) |
|
return results |
|
|
|
|
|
def instances_to_coco_json(instances, img_id): |
|
""" |
|
Dump an "Instances" object to a COCO-format json that's used for evaluation. |
|
|
|
Args: |
|
instances (Instances): |
|
img_id (int): the image id |
|
|
|
Returns: |
|
list[dict]: list of json annotations in COCO format. |
|
""" |
|
num_instance = len(instances) |
|
if num_instance == 0: |
|
return [] |
|
|
|
boxes = instances.pred_boxes.tensor.numpy() |
|
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) |
|
boxes = boxes.tolist() |
|
scores = instances.scores.tolist() |
|
classes = instances.pred_classes.tolist() |
|
|
|
has_mask = instances.has("pred_masks") |
|
if has_mask: |
|
|
|
|
|
rles = [ |
|
mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] |
|
for mask in instances.pred_masks |
|
] |
|
for rle in rles: |
|
|
|
|
|
|
|
|
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
|
|
has_keypoints = instances.has("pred_keypoints") |
|
if has_keypoints: |
|
keypoints = instances.pred_keypoints |
|
|
|
results = [] |
|
for k in range(num_instance): |
|
result = { |
|
"image_id": img_id, |
|
"category_id": classes[k], |
|
"bbox": boxes[k], |
|
"score": scores[k], |
|
} |
|
if has_mask: |
|
result["segmentation"] = rles[k] |
|
if has_keypoints: |
|
|
|
|
|
|
|
|
|
|
|
keypoints[k][:, :2] -= 0.5 |
|
result["keypoints"] = keypoints[k].flatten().tolist() |
|
results.append(result) |
|
return results |
|
|
|
|
|
|
|
|
|
def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): |
|
""" |
|
Evaluate detection proposal recall metrics. This function is a much |
|
faster alternative to the official COCO API recall evaluation code. However, |
|
it produces slightly different results. |
|
""" |
|
|
|
|
|
areas = { |
|
"all": 0, |
|
"small": 1, |
|
"medium": 2, |
|
"large": 3, |
|
"96-128": 4, |
|
"128-256": 5, |
|
"256-512": 6, |
|
"512-inf": 7, |
|
} |
|
area_ranges = [ |
|
[0**2, 1e5**2], |
|
[0**2, 32**2], |
|
[32**2, 96**2], |
|
[96**2, 1e5**2], |
|
[96**2, 128**2], |
|
[128**2, 256**2], |
|
[256**2, 512**2], |
|
[512**2, 1e5**2], |
|
] |
|
assert area in areas, "Unknown area range: {}".format(area) |
|
area_range = area_ranges[areas[area]] |
|
gt_overlaps = [] |
|
num_pos = 0 |
|
|
|
for prediction_dict in dataset_predictions: |
|
predictions = prediction_dict["proposals"] |
|
|
|
|
|
|
|
inds = predictions.objectness_logits.sort(descending=True)[1] |
|
predictions = predictions[inds] |
|
|
|
ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) |
|
anno = coco_api.loadAnns(ann_ids) |
|
gt_boxes = [ |
|
BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) |
|
for obj in anno |
|
if obj["iscrowd"] == 0 |
|
] |
|
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) |
|
gt_boxes = Boxes(gt_boxes) |
|
gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) |
|
|
|
if len(gt_boxes) == 0 or len(predictions) == 0: |
|
continue |
|
|
|
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) |
|
gt_boxes = gt_boxes[valid_gt_inds] |
|
|
|
num_pos += len(gt_boxes) |
|
|
|
if len(gt_boxes) == 0: |
|
continue |
|
|
|
if limit is not None and len(predictions) > limit: |
|
predictions = predictions[:limit] |
|
|
|
overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) |
|
|
|
_gt_overlaps = torch.zeros(len(gt_boxes)) |
|
for j in range(min(len(predictions), len(gt_boxes))): |
|
|
|
|
|
max_overlaps, argmax_overlaps = overlaps.max(dim=0) |
|
|
|
|
|
gt_ovr, gt_ind = max_overlaps.max(dim=0) |
|
assert gt_ovr >= 0 |
|
|
|
box_ind = argmax_overlaps[gt_ind] |
|
|
|
_gt_overlaps[j] = overlaps[box_ind, gt_ind] |
|
assert _gt_overlaps[j] == gt_ovr |
|
|
|
overlaps[box_ind, :] = -1 |
|
overlaps[:, gt_ind] = -1 |
|
|
|
|
|
gt_overlaps.append(_gt_overlaps) |
|
gt_overlaps = ( |
|
torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) |
|
) |
|
gt_overlaps, _ = torch.sort(gt_overlaps) |
|
|
|
if thresholds is None: |
|
step = 0.05 |
|
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) |
|
recalls = torch.zeros_like(thresholds) |
|
|
|
for i, t in enumerate(thresholds): |
|
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) |
|
|
|
ar = recalls.mean() |
|
return { |
|
"ar": ar, |
|
"recalls": recalls, |
|
"thresholds": thresholds, |
|
"gt_overlaps": gt_overlaps, |
|
"num_pos": num_pos, |
|
} |
|
|
|
|
|
def _evaluate_predictions_on_coco( |
|
coco_gt, |
|
coco_results, |
|
iou_type, |
|
kpt_oks_sigmas=None, |
|
cocoeval_fn=COCOeval_opt, |
|
img_ids=None, |
|
max_dets_per_image=None, |
|
): |
|
""" |
|
Evaluate the coco results using COCOEval API. |
|
""" |
|
assert len(coco_results) > 0 |
|
|
|
if iou_type == "segm": |
|
coco_results = copy.deepcopy(coco_results) |
|
|
|
|
|
|
|
|
|
for c in coco_results: |
|
c.pop("bbox", None) |
|
|
|
coco_dt = coco_gt.loadRes(coco_results) |
|
coco_eval = cocoeval_fn(coco_gt, coco_dt, iou_type) |
|
|
|
if max_dets_per_image is None: |
|
max_dets_per_image = [1, 10, 100] |
|
else: |
|
assert ( |
|
len(max_dets_per_image) >= 3 |
|
), "COCOeval requires maxDets (and max_dets_per_image) to have length at least 3" |
|
|
|
|
|
if max_dets_per_image[2] != 100: |
|
coco_eval = COCOevalMaxDets(coco_gt, coco_dt, iou_type) |
|
if iou_type != "keypoints": |
|
coco_eval.params.maxDets = max_dets_per_image |
|
|
|
if img_ids is not None: |
|
coco_eval.params.imgIds = img_ids |
|
|
|
if iou_type == "keypoints": |
|
|
|
if kpt_oks_sigmas: |
|
assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" |
|
coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) |
|
|
|
|
|
num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 |
|
num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 |
|
num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) |
|
assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( |
|
f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " |
|
f"Ground truth contains {num_keypoints_gt} keypoints. " |
|
f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " |
|
"They have to agree with each other. For meaning of OKS, please refer to " |
|
"http://cocodataset.org/#keypoints-eval." |
|
) |
|
|
|
coco_eval.evaluate() |
|
coco_eval.accumulate() |
|
coco_eval.summarize() |
|
|
|
return coco_eval |
|
|
|
|
|
class COCOevalMaxDets(COCOeval): |
|
""" |
|
Modified version of COCOeval for evaluating AP with a custom |
|
maxDets (by default for COCO, maxDets is 100) |
|
""" |
|
|
|
def summarize(self): |
|
""" |
|
Compute and display summary metrics for evaluation results given |
|
a custom value for max_dets_per_image |
|
""" |
|
|
|
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): |
|
p = self.params |
|
iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" |
|
titleStr = "Average Precision" if ap == 1 else "Average Recall" |
|
typeStr = "(AP)" if ap == 1 else "(AR)" |
|
iouStr = ( |
|
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) |
|
if iouThr is None |
|
else "{:0.2f}".format(iouThr) |
|
) |
|
|
|
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] |
|
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] |
|
if ap == 1: |
|
|
|
s = self.eval["precision"] |
|
|
|
if iouThr is not None: |
|
t = np.where(iouThr == p.iouThrs)[0] |
|
s = s[t] |
|
s = s[:, :, :, aind, mind] |
|
else: |
|
|
|
s = self.eval["recall"] |
|
if iouThr is not None: |
|
t = np.where(iouThr == p.iouThrs)[0] |
|
s = s[t] |
|
s = s[:, :, aind, mind] |
|
if len(s[s > -1]) == 0: |
|
mean_s = -1 |
|
else: |
|
mean_s = np.mean(s[s > -1]) |
|
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) |
|
return mean_s |
|
|
|
def _summarizeDets(): |
|
stats = np.zeros((12,)) |
|
|
|
stats[0] = _summarize(1, maxDets=self.params.maxDets[2]) |
|
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) |
|
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) |
|
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) |
|
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) |
|
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) |
|
stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) |
|
stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) |
|
stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) |
|
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) |
|
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) |
|
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) |
|
return stats |
|
|
|
def _summarizeKps(): |
|
stats = np.zeros((10,)) |
|
stats[0] = _summarize(1, maxDets=20) |
|
stats[1] = _summarize(1, maxDets=20, iouThr=0.5) |
|
stats[2] = _summarize(1, maxDets=20, iouThr=0.75) |
|
stats[3] = _summarize(1, maxDets=20, areaRng="medium") |
|
stats[4] = _summarize(1, maxDets=20, areaRng="large") |
|
stats[5] = _summarize(0, maxDets=20) |
|
stats[6] = _summarize(0, maxDets=20, iouThr=0.5) |
|
stats[7] = _summarize(0, maxDets=20, iouThr=0.75) |
|
stats[8] = _summarize(0, maxDets=20, areaRng="medium") |
|
stats[9] = _summarize(0, maxDets=20, areaRng="large") |
|
return stats |
|
|
|
if not self.eval: |
|
raise Exception("Please run accumulate() first") |
|
iouType = self.params.iouType |
|
if iouType == "segm" or iouType == "bbox": |
|
summarize = _summarizeDets |
|
elif iouType == "keypoints": |
|
summarize = _summarizeKps |
|
self.stats = summarize() |
|
|
|
def __str__(self): |
|
self.summarize() |
|
|