|
|
|
#include <ATen/ATen.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <c10/cuda/CUDAGuard.h> |
|
#include <ATen/cuda/CUDAApplyUtils.cuh> |
|
|
|
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \ |
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ |
|
i += blockDim.x * gridDim.x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace detectron2 { |
|
|
|
namespace { |
|
|
|
template <typename T> |
|
__device__ T bilinear_interpolate( |
|
const T* input, |
|
const int height, |
|
const int width, |
|
T y, |
|
T x) { |
|
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) { |
|
|
|
return 0; |
|
} |
|
|
|
if (y < 0) { |
|
y = 0; |
|
} |
|
|
|
if (x < 0) { |
|
x = 0; |
|
} |
|
|
|
int y_low = (int)y; |
|
int x_low = (int)x; |
|
int y_high; |
|
int x_high; |
|
|
|
if (y_low >= height - 1) { |
|
y_high = y_low = height - 1; |
|
y = (T)y_low; |
|
} else { |
|
y_high = y_low + 1; |
|
} |
|
|
|
if (x_low >= width - 1) { |
|
x_high = x_low = width - 1; |
|
x = (T)x_low; |
|
} else { |
|
x_high = x_low + 1; |
|
} |
|
|
|
T ly = y - y_low; |
|
T lx = x - x_low; |
|
T hy = 1. - ly, hx = 1. - lx; |
|
|
|
T v1 = input[y_low * width + x_low]; |
|
T v2 = input[y_low * width + x_high]; |
|
T v3 = input[y_high * width + x_low]; |
|
T v4 = input[y_high * width + x_high]; |
|
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; |
|
|
|
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); |
|
|
|
return val; |
|
} |
|
|
|
template <typename T> |
|
__device__ void bilinear_interpolate_gradient( |
|
const int height, |
|
const int width, |
|
T y, |
|
T x, |
|
T& w1, |
|
T& w2, |
|
T& w3, |
|
T& w4, |
|
int& x_low, |
|
int& x_high, |
|
int& y_low, |
|
int& y_high) { |
|
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) { |
|
|
|
w1 = w2 = w3 = w4 = 0.; |
|
x_low = x_high = y_low = y_high = -1; |
|
return; |
|
} |
|
|
|
if (y < 0) { |
|
y = 0; |
|
} |
|
|
|
if (x < 0) { |
|
x = 0; |
|
} |
|
|
|
y_low = (int)y; |
|
x_low = (int)x; |
|
|
|
if (y_low >= height - 1) { |
|
y_high = y_low = height - 1; |
|
y = (T)y_low; |
|
} else { |
|
y_high = y_low + 1; |
|
} |
|
|
|
if (x_low >= width - 1) { |
|
x_high = x_low = width - 1; |
|
x = (T)x_low; |
|
} else { |
|
x_high = x_low + 1; |
|
} |
|
|
|
T ly = y - y_low; |
|
T lx = x - x_low; |
|
T hy = 1. - ly, hx = 1. - lx; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; |
|
|
|
return; |
|
} |
|
|
|
} |
|
|
|
template <typename T> |
|
__global__ void RoIAlignRotatedForward( |
|
const int nthreads, |
|
const T* input, |
|
const T spatial_scale, |
|
const int channels, |
|
const int height, |
|
const int width, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int sampling_ratio, |
|
const T* rois, |
|
T* top_data) { |
|
CUDA_1D_KERNEL_LOOP(index, nthreads) { |
|
|
|
int pw = index % pooled_width; |
|
int ph = (index / pooled_width) % pooled_height; |
|
int c = (index / pooled_width / pooled_height) % channels; |
|
int n = index / pooled_width / pooled_height / channels; |
|
|
|
const T* current_roi = rois + n * 6; |
|
int roi_batch_ind = current_roi[0]; |
|
|
|
|
|
|
|
|
|
T offset = (T)0.5; |
|
T roi_center_w = current_roi[1] * spatial_scale - offset; |
|
T roi_center_h = current_roi[2] * spatial_scale - offset; |
|
T roi_width = current_roi[3] * spatial_scale; |
|
T roi_height = current_roi[4] * spatial_scale; |
|
T theta = current_roi[5] * M_PI / 180.0; |
|
T cos_theta = cos(theta); |
|
T sin_theta = sin(theta); |
|
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); |
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); |
|
|
|
const T* offset_input = |
|
input + (roi_batch_ind * channels + c) * height * width; |
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0) |
|
? sampling_ratio |
|
: ceil(roi_height / pooled_height); |
|
int roi_bin_grid_w = |
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); |
|
|
|
|
|
|
|
T roi_start_h = -roi_height / 2.0; |
|
T roi_start_w = -roi_width / 2.0; |
|
|
|
|
|
const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); |
|
|
|
T output_val = 0.; |
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) |
|
{ |
|
const T yy = roi_start_h + ph * bin_size_h + |
|
static_cast<T>(iy + .5f) * bin_size_h / |
|
static_cast<T>(roi_bin_grid_h); |
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) { |
|
const T xx = roi_start_w + pw * bin_size_w + |
|
static_cast<T>(ix + .5f) * bin_size_w / |
|
static_cast<T>(roi_bin_grid_w); |
|
|
|
|
|
T y = yy * cos_theta - xx * sin_theta + roi_center_h; |
|
T x = yy * sin_theta + xx * cos_theta + roi_center_w; |
|
|
|
T val = bilinear_interpolate(offset_input, height, width, y, x); |
|
output_val += val; |
|
} |
|
} |
|
output_val /= count; |
|
|
|
top_data[index] = output_val; |
|
} |
|
} |
|
|
|
template <typename T> |
|
__global__ void RoIAlignRotatedBackwardFeature( |
|
const int nthreads, |
|
const T* top_diff, |
|
const int num_rois, |
|
const T spatial_scale, |
|
const int channels, |
|
const int height, |
|
const int width, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int sampling_ratio, |
|
T* bottom_diff, |
|
const T* rois) { |
|
CUDA_1D_KERNEL_LOOP(index, nthreads) { |
|
|
|
int pw = index % pooled_width; |
|
int ph = (index / pooled_width) % pooled_height; |
|
int c = (index / pooled_width / pooled_height) % channels; |
|
int n = index / pooled_width / pooled_height / channels; |
|
|
|
const T* current_roi = rois + n * 6; |
|
int roi_batch_ind = current_roi[0]; |
|
|
|
|
|
|
|
|
|
T offset = (T)0.5; |
|
T roi_center_w = current_roi[1] * spatial_scale - offset; |
|
T roi_center_h = current_roi[2] * spatial_scale - offset; |
|
T roi_width = current_roi[3] * spatial_scale; |
|
T roi_height = current_roi[4] * spatial_scale; |
|
T theta = current_roi[5] * M_PI / 180.0; |
|
T cos_theta = cos(theta); |
|
T sin_theta = sin(theta); |
|
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); |
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); |
|
|
|
T* offset_bottom_diff = |
|
bottom_diff + (roi_batch_ind * channels + c) * height * width; |
|
|
|
int top_offset = (n * channels + c) * pooled_height * pooled_width; |
|
const T* offset_top_diff = top_diff + top_offset; |
|
const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; |
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0) |
|
? sampling_ratio |
|
: ceil(roi_height / pooled_height); |
|
int roi_bin_grid_w = |
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); |
|
|
|
|
|
|
|
T roi_start_h = -roi_height / 2.0; |
|
T roi_start_w = -roi_width / 2.0; |
|
|
|
|
|
const T count = roi_bin_grid_h * roi_bin_grid_w; |
|
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) |
|
{ |
|
const T yy = roi_start_h + ph * bin_size_h + |
|
static_cast<T>(iy + .5f) * bin_size_h / |
|
static_cast<T>(roi_bin_grid_h); |
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) { |
|
const T xx = roi_start_w + pw * bin_size_w + |
|
static_cast<T>(ix + .5f) * bin_size_w / |
|
static_cast<T>(roi_bin_grid_w); |
|
|
|
|
|
T y = yy * cos_theta - xx * sin_theta + roi_center_h; |
|
T x = yy * sin_theta + xx * cos_theta + roi_center_w; |
|
|
|
T w1, w2, w3, w4; |
|
int x_low, x_high, y_low, y_high; |
|
|
|
bilinear_interpolate_gradient( |
|
height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high); |
|
|
|
T g1 = top_diff_this_bin * w1 / count; |
|
T g2 = top_diff_this_bin * w2 / count; |
|
T g3 = top_diff_this_bin * w3 / count; |
|
T g4 = top_diff_this_bin * w4 / count; |
|
|
|
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { |
|
atomicAdd( |
|
offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1)); |
|
atomicAdd( |
|
offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2)); |
|
atomicAdd( |
|
offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3)); |
|
atomicAdd( |
|
offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
at::Tensor ROIAlignRotated_forward_cuda( |
|
const at::Tensor& input, |
|
const at::Tensor& rois, |
|
const float spatial_scale, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int sampling_ratio) { |
|
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); |
|
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); |
|
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; |
|
|
|
at::CheckedFrom c = "ROIAlignRotated_forward_cuda"; |
|
at::checkAllSameGPU(c, {input_t, rois_t}); |
|
at::checkAllSameType(c, {input_t, rois_t}); |
|
at::cuda::CUDAGuard device_guard(input.device()); |
|
|
|
auto num_rois = rois.size(0); |
|
auto channels = input.size(1); |
|
auto height = input.size(2); |
|
auto width = input.size(3); |
|
|
|
auto output = at::empty( |
|
{num_rois, channels, pooled_height, pooled_width}, input.options()); |
|
auto output_size = num_rois * pooled_height * pooled_width * channels; |
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
dim3 grid(std::min( |
|
at::cuda::ATenCeilDiv( |
|
static_cast<int64_t>(output_size), static_cast<int64_t>(512)), |
|
static_cast<int64_t>(4096))); |
|
dim3 block(512); |
|
|
|
if (output.numel() == 0) { |
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
return output; |
|
} |
|
|
|
auto input_ = input.contiguous(), rois_ = rois.contiguous(); |
|
AT_DISPATCH_FLOATING_TYPES( |
|
input.scalar_type(), "ROIAlignRotated_forward", [&] { |
|
RoIAlignRotatedForward<scalar_t><<<grid, block, 0, stream>>>( |
|
output_size, |
|
input_.data_ptr<scalar_t>(), |
|
spatial_scale, |
|
channels, |
|
height, |
|
width, |
|
pooled_height, |
|
pooled_width, |
|
sampling_ratio, |
|
rois_.data_ptr<scalar_t>(), |
|
output.data_ptr<scalar_t>()); |
|
}); |
|
cudaDeviceSynchronize(); |
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
return output; |
|
} |
|
|
|
|
|
at::Tensor ROIAlignRotated_backward_cuda( |
|
const at::Tensor& grad, |
|
const at::Tensor& rois, |
|
const float spatial_scale, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int batch_size, |
|
const int channels, |
|
const int height, |
|
const int width, |
|
const int sampling_ratio) { |
|
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); |
|
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); |
|
|
|
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}; |
|
at::CheckedFrom c = "ROIAlign_backward_cuda"; |
|
at::checkAllSameGPU(c, {grad_t, rois_t}); |
|
at::checkAllSameType(c, {grad_t, rois_t}); |
|
at::cuda::CUDAGuard device_guard(grad.device()); |
|
|
|
auto num_rois = rois.size(0); |
|
auto grad_input = |
|
at::zeros({batch_size, channels, height, width}, grad.options()); |
|
|
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
dim3 grid(std::min( |
|
at::cuda::ATenCeilDiv( |
|
static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)), |
|
static_cast<int64_t>(4096))); |
|
dim3 block(512); |
|
|
|
|
|
if (grad.numel() == 0) { |
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
return grad_input; |
|
} |
|
|
|
auto grad_ = grad.contiguous(), rois_ = rois.contiguous(); |
|
AT_DISPATCH_FLOATING_TYPES( |
|
grad.scalar_type(), "ROIAlignRotated_backward", [&] { |
|
RoIAlignRotatedBackwardFeature<scalar_t><<<grid, block, 0, stream>>>( |
|
grad.numel(), |
|
grad_.data_ptr<scalar_t>(), |
|
num_rois, |
|
spatial_scale, |
|
channels, |
|
height, |
|
width, |
|
pooled_height, |
|
pooled_width, |
|
sampling_ratio, |
|
grad_input.data_ptr<scalar_t>(), |
|
rois_.data_ptr<scalar_t>()); |
|
}); |
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
return grad_input; |
|
} |
|
|
|
} |
|
|