|
|
|
import io |
|
import numpy as np |
|
import os |
|
import re |
|
import tempfile |
|
import unittest |
|
from typing import Callable |
|
import torch |
|
import torch.onnx.symbolic_helper as sym_help |
|
from packaging import version |
|
from torch._C import ListType |
|
from torch.onnx import register_custom_op_symbolic |
|
|
|
from detectron2 import model_zoo |
|
from detectron2.config import CfgNode, LazyConfig, instantiate |
|
from detectron2.data import DatasetCatalog |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.modeling import build_model |
|
from detectron2.structures import Boxes, Instances, ROIMasks |
|
from detectron2.utils.file_io import PathManager |
|
|
|
|
|
""" |
|
Internal utilities for tests. Don't use except for writing tests. |
|
""" |
|
|
|
|
|
def get_model_no_weights(config_path): |
|
""" |
|
Like model_zoo.get, but do not load any weights (even pretrained) |
|
""" |
|
cfg = model_zoo.get_config(config_path) |
|
if isinstance(cfg, CfgNode): |
|
if not torch.cuda.is_available(): |
|
cfg.MODEL.DEVICE = "cpu" |
|
return build_model(cfg) |
|
else: |
|
return instantiate(cfg.model) |
|
|
|
|
|
def random_boxes(num_boxes, max_coord=100, device="cpu"): |
|
""" |
|
Create a random Nx4 boxes tensor, with coordinates < max_coord. |
|
""" |
|
boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5) |
|
boxes.clamp_(min=1.0) |
|
|
|
|
|
|
|
|
|
boxes[:, 2:] += boxes[:, :2] |
|
return boxes |
|
|
|
|
|
def get_sample_coco_image(tensor=True): |
|
""" |
|
Args: |
|
tensor (bool): if True, returns 3xHxW tensor. |
|
else, returns a HxWx3 numpy array. |
|
|
|
Returns: |
|
an image, in BGR color. |
|
""" |
|
try: |
|
file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"] |
|
if not PathManager.exists(file_name): |
|
raise FileNotFoundError() |
|
except IOError: |
|
|
|
file_name = PathManager.get_local_path( |
|
"http://images.cocodataset.org/train2017/000000000009.jpg" |
|
) |
|
ret = read_image(file_name, format="BGR") |
|
if tensor: |
|
ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1))) |
|
return ret |
|
|
|
|
|
def convert_scripted_instances(instances): |
|
""" |
|
Convert a scripted Instances object to a regular :class:`Instances` object |
|
""" |
|
assert hasattr( |
|
instances, "image_size" |
|
), f"Expect an Instances object, but got {type(instances)}!" |
|
ret = Instances(instances.image_size) |
|
for name in instances._field_names: |
|
val = getattr(instances, "_" + name, None) |
|
if val is not None: |
|
ret.set(name, val) |
|
return ret |
|
|
|
|
|
def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False): |
|
""" |
|
Args: |
|
input, other (Instances): |
|
size_as_tensor: compare image_size of the Instances as tensors (instead of tuples). |
|
Useful for comparing outputs of tracing. |
|
""" |
|
if not isinstance(input, Instances): |
|
input = convert_scripted_instances(input) |
|
if not isinstance(other, Instances): |
|
other = convert_scripted_instances(other) |
|
|
|
if not msg: |
|
msg = "Two Instances are different! " |
|
else: |
|
msg = msg.rstrip() + " " |
|
|
|
size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!" |
|
if size_as_tensor: |
|
assert torch.equal( |
|
torch.tensor(input.image_size), torch.tensor(other.image_size) |
|
), size_error_msg |
|
else: |
|
assert input.image_size == other.image_size, size_error_msg |
|
fields = sorted(input.get_fields().keys()) |
|
fields_other = sorted(other.get_fields().keys()) |
|
assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!" |
|
|
|
for f in fields: |
|
val1, val2 = input.get(f), other.get(f) |
|
if isinstance(val1, (Boxes, ROIMasks)): |
|
|
|
assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), ( |
|
msg + f"Field {f} differs too much!" |
|
) |
|
elif isinstance(val1, torch.Tensor): |
|
if val1.dtype.is_floating_point: |
|
mag = torch.abs(val1).max().cpu().item() |
|
assert torch.allclose(val1, val2, atol=mag * rtol), ( |
|
msg + f"Field {f} differs too much!" |
|
) |
|
else: |
|
assert torch.equal(val1, val2), msg + f"Field {f} is different!" |
|
else: |
|
raise ValueError(f"Don't know how to compare type {type(val1)}") |
|
|
|
|
|
def reload_script_model(module): |
|
""" |
|
Save a jit module and load it back. |
|
Similar to the `getExportImportCopy` function in torch/testing/ |
|
""" |
|
buffer = io.BytesIO() |
|
torch.jit.save(module, buffer) |
|
buffer.seek(0) |
|
return torch.jit.load(buffer) |
|
|
|
|
|
def reload_lazy_config(cfg): |
|
""" |
|
Save an object by LazyConfig.save and load it back. |
|
This is used to test that a config still works the same after |
|
serialization/deserialization. |
|
""" |
|
with tempfile.TemporaryDirectory(prefix="detectron2") as d: |
|
fname = os.path.join(d, "d2_cfg_test.yaml") |
|
LazyConfig.save(cfg, fname) |
|
return LazyConfig.load(fname) |
|
|
|
|
|
def min_torch_version(min_version: str) -> bool: |
|
""" |
|
Returns True when torch's version is at least `min_version`. |
|
""" |
|
try: |
|
import torch |
|
except ImportError: |
|
return False |
|
|
|
installed_version = version.parse(torch.__version__.split("+")[0]) |
|
min_version = version.parse(min_version) |
|
return installed_version >= min_version |
|
|
|
|
|
def has_dynamic_axes(onnx_model): |
|
""" |
|
Return True when all ONNX input/output have only dynamic axes for all ranks |
|
""" |
|
return all( |
|
not dim.dim_param.isnumeric() |
|
for inp in onnx_model.graph.input |
|
for dim in inp.type.tensor_type.shape.dim |
|
) and all( |
|
not dim.dim_param.isnumeric() |
|
for out in onnx_model.graph.output |
|
for dim in out.type.tensor_type.shape.dim |
|
) |
|
|
|
|
|
def register_custom_op_onnx_export( |
|
opname: str, symbolic_fn: Callable, opset_version: int, min_version: str |
|
) -> None: |
|
""" |
|
Register `symbolic_fn` as PyTorch's symbolic `opname`-`opset_version` for ONNX export. |
|
The registration is performed only when current PyTorch's version is < `min_version.` |
|
IMPORTANT: symbolic must be manually unregistered after the caller function returns |
|
""" |
|
if min_torch_version(min_version): |
|
return |
|
register_custom_op_symbolic(opname, symbolic_fn, opset_version) |
|
print(f"_register_custom_op_onnx_export({opname}, {opset_version}) succeeded.") |
|
|
|
|
|
def unregister_custom_op_onnx_export(opname: str, opset_version: int, min_version: str) -> None: |
|
""" |
|
Unregister PyTorch's symbolic `opname`-`opset_version` for ONNX export. |
|
The un-registration is performed only when PyTorch's version is < `min_version` |
|
IMPORTANT: The symbolic must have been manually registered by the caller, otherwise |
|
the incorrect symbolic may be unregistered instead. |
|
""" |
|
|
|
|
|
|
|
try: |
|
from torch.onnx import unregister_custom_op_symbolic as _unregister_custom_op_symbolic |
|
except ImportError: |
|
|
|
def _unregister_custom_op_symbolic(symbolic_name, opset_version): |
|
import torch.onnx.symbolic_registry as sym_registry |
|
from torch.onnx.symbolic_helper import _onnx_main_opset, _onnx_stable_opsets |
|
|
|
def _get_ns_op_name_from_custom_op(symbolic_name): |
|
try: |
|
from torch.onnx.utils import get_ns_op_name_from_custom_op |
|
|
|
ns, op_name = get_ns_op_name_from_custom_op(symbolic_name) |
|
except ImportError as import_error: |
|
if not bool( |
|
re.match(r"^[a-zA-Z0-9-_]*::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name) |
|
): |
|
raise ValueError( |
|
f"Invalid symbolic name {symbolic_name}. Must be `domain::name`" |
|
) from import_error |
|
|
|
ns, op_name = symbolic_name.split("::") |
|
if ns == "onnx": |
|
raise ValueError(f"{ns} domain cannot be modified.") from import_error |
|
|
|
if ns == "aten": |
|
ns = "" |
|
|
|
return ns, op_name |
|
|
|
def _unregister_op(opname: str, domain: str, version: int): |
|
try: |
|
sym_registry.unregister_op(op_name, ns, ver) |
|
except AttributeError as attribute_error: |
|
if sym_registry.is_registered_op(opname, domain, version): |
|
del sym_registry._registry[(domain, version)][opname] |
|
if not sym_registry._registry[(domain, version)]: |
|
del sym_registry._registry[(domain, version)] |
|
else: |
|
raise RuntimeError( |
|
f"The opname {opname} is not registered." |
|
) from attribute_error |
|
|
|
ns, op_name = _get_ns_op_name_from_custom_op(symbolic_name) |
|
for ver in _onnx_stable_opsets + [_onnx_main_opset]: |
|
if ver >= opset_version: |
|
_unregister_op(op_name, ns, ver) |
|
|
|
if min_torch_version(min_version): |
|
return |
|
_unregister_custom_op_symbolic(opname, opset_version) |
|
print(f"_unregister_custom_op_onnx_export({opname}, {opset_version}) succeeded.") |
|
|
|
|
|
skipIfOnCPUCI = unittest.skipIf( |
|
os.environ.get("CI") and not torch.cuda.is_available(), |
|
"The test is too slow on CPUs and will be executed on CircleCI's GPU jobs.", |
|
) |
|
|
|
|
|
def skipIfUnsupportedMinOpsetVersion(min_opset_version, current_opset_version=None): |
|
""" |
|
Skips tests for ONNX Opset versions older than min_opset_version. |
|
""" |
|
|
|
def skip_dec(func): |
|
def wrapper(self): |
|
try: |
|
opset_version = self.opset_version |
|
except AttributeError: |
|
opset_version = current_opset_version |
|
if opset_version < min_opset_version: |
|
raise unittest.SkipTest( |
|
f"Unsupported opset_version {opset_version}" |
|
f", required is {min_opset_version}" |
|
) |
|
return func(self) |
|
|
|
return wrapper |
|
|
|
return skip_dec |
|
|
|
|
|
def skipIfUnsupportedMinTorchVersion(min_version): |
|
""" |
|
Skips tests for PyTorch versions older than min_version. |
|
""" |
|
reason = f"module 'torch' has __version__ {torch.__version__}" f", required is: {min_version}" |
|
return unittest.skipIf(not min_torch_version(min_version), reason) |
|
|
|
|
|
|
|
def _pytorch1111_symbolic_opset9_to(g, self, *args): |
|
"""aten::to() symbolic that must be used for testing with PyTorch < 1.11.1.""" |
|
|
|
def is_aten_to_device_only(args): |
|
if len(args) == 4: |
|
|
|
return ( |
|
args[0].node().kind() == "prim::device" |
|
or args[0].type().isSubtypeOf(ListType.ofInts()) |
|
or ( |
|
sym_help._is_value(args[0]) |
|
and args[0].node().kind() == "onnx::Constant" |
|
and isinstance(args[0].node()["value"], str) |
|
) |
|
) |
|
elif len(args) == 5: |
|
|
|
|
|
dtype = sym_help._get_const(args[1], "i", "dtype") |
|
return dtype is None |
|
elif len(args) in (6, 7): |
|
|
|
|
|
|
|
dtype = sym_help._get_const(args[0], "i", "dtype") |
|
return dtype is None |
|
return False |
|
|
|
|
|
if is_aten_to_device_only(args): |
|
return self |
|
|
|
if len(args) == 4: |
|
|
|
|
|
|
|
dtype = args[0] |
|
if sym_help._is_value(args[0]) and args[0].node().kind() == "onnx::Constant": |
|
tval = args[0].node()["value"] |
|
if isinstance(tval, torch.Tensor): |
|
if len(tval.shape) == 0: |
|
tval = tval.item() |
|
dtype = int(tval) |
|
else: |
|
dtype = tval |
|
|
|
if sym_help._is_value(dtype) or isinstance(dtype, torch.Tensor): |
|
|
|
dtype = args[0].type().scalarType() |
|
return g.op("Cast", self, to_i=sym_help.cast_pytorch_to_onnx[dtype]) |
|
else: |
|
|
|
|
|
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) |
|
elif len(args) == 5: |
|
|
|
dtype = sym_help._get_const(args[1], "i", "dtype") |
|
|
|
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) |
|
elif len(args) == 6: |
|
|
|
dtype = sym_help._get_const(args[0], "i", "dtype") |
|
|
|
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) |
|
elif len(args) == 7: |
|
|
|
dtype = sym_help._get_const(args[0], "i", "dtype") |
|
|
|
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) |
|
else: |
|
return sym_help._onnx_unsupported("Unknown aten::to signature") |
|
|
|
|
|
|
|
def _pytorch1111_symbolic_opset9_repeat_interleave(g, self, repeats, dim=None, output_size=None): |
|
|
|
|
|
from torch.onnx.symbolic_opset9 import expand, unsqueeze |
|
|
|
input = self |
|
|
|
|
|
if sym_help._is_none(dim): |
|
input = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1]))) |
|
dim = 0 |
|
else: |
|
dim = sym_help._maybe_get_scalar(dim) |
|
|
|
repeats_dim = sym_help._get_tensor_rank(repeats) |
|
repeats_sizes = sym_help._get_tensor_sizes(repeats) |
|
input_sizes = sym_help._get_tensor_sizes(input) |
|
if repeats_dim is None: |
|
raise RuntimeError( |
|
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats rank." |
|
) |
|
if repeats_sizes is None: |
|
raise RuntimeError( |
|
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats size." |
|
) |
|
if input_sizes is None: |
|
raise RuntimeError( |
|
"Unsupported: ONNX export of repeat_interleave for unknown " "input size." |
|
) |
|
|
|
input_sizes_temp = input_sizes.copy() |
|
for idx, input_size in enumerate(input_sizes): |
|
if input_size is None: |
|
input_sizes[idx], input_sizes_temp[idx] = 0, -1 |
|
|
|
|
|
if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1): |
|
if not sym_help._is_tensor(repeats): |
|
repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) |
|
if input_sizes[dim] == 0: |
|
return sym_help._onnx_opset_unsupported_detailed( |
|
"repeat_interleave", |
|
9, |
|
13, |
|
"Unsupported along dimension with unknown input size", |
|
) |
|
else: |
|
reps = input_sizes[dim] |
|
repeats = expand(g, repeats, g.op("Constant", value_t=torch.tensor([reps])), None) |
|
|
|
|
|
elif repeats_dim == 1: |
|
if input_sizes[dim] == 0: |
|
return sym_help._onnx_opset_unsupported_detailed( |
|
"repeat_interleave", |
|
9, |
|
13, |
|
"Unsupported along dimension with unknown input size", |
|
) |
|
if repeats_sizes[0] is None: |
|
return sym_help._onnx_opset_unsupported_detailed( |
|
"repeat_interleave", 9, 13, "Unsupported for cases with dynamic repeats" |
|
) |
|
assert ( |
|
repeats_sizes[0] == input_sizes[dim] |
|
), "repeats must have the same size as input along dim" |
|
reps = repeats_sizes[0] |
|
else: |
|
raise RuntimeError("repeats must be 0-dim or 1-dim tensor") |
|
|
|
final_splits = list() |
|
r_splits = sym_help._repeat_interleave_split_helper(g, repeats, reps, 0) |
|
if isinstance(r_splits, torch._C.Value): |
|
r_splits = [r_splits] |
|
i_splits = sym_help._repeat_interleave_split_helper(g, input, reps, dim) |
|
if isinstance(i_splits, torch._C.Value): |
|
i_splits = [i_splits] |
|
input_sizes[dim], input_sizes_temp[dim] = -1, 1 |
|
for idx, r_split in enumerate(r_splits): |
|
i_split = unsqueeze(g, i_splits[idx], dim + 1) |
|
r_concat = [ |
|
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[: dim + 1])), |
|
r_split, |
|
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[dim + 1 :])), |
|
] |
|
r_concat = g.op("Concat", *r_concat, axis_i=0) |
|
i_split = expand(g, i_split, r_concat, None) |
|
i_split = sym_help._reshape_helper( |
|
g, |
|
i_split, |
|
g.op("Constant", value_t=torch.LongTensor(input_sizes)), |
|
allowzero=0, |
|
) |
|
final_splits.append(i_split) |
|
return g.op("Concat", *final_splits, axis_i=dim) |
|
|