|
|
|
import logging |
|
import os |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.structures import BoxMode |
|
from detectron2.utils.file_io import PathManager |
|
from fvcore.common.timer import Timer |
|
|
|
from .builtin_meta import _get_coco_instances_meta |
|
from .lvis_v0_5_categories import LVIS_CATEGORIES as LVIS_V0_5_CATEGORIES |
|
from .lvis_v1_categories import LVIS_CATEGORIES as LVIS_V1_CATEGORIES |
|
from .lvis_v1_category_image_count import ( |
|
LVIS_CATEGORY_IMAGE_COUNT as LVIS_V1_CATEGORY_IMAGE_COUNT, |
|
) |
|
|
|
""" |
|
This file contains functions to parse LVIS-format annotations into dicts in the |
|
"Detectron2 format". |
|
""" |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
__all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"] |
|
|
|
|
|
def register_lvis_instances(name, metadata, json_file, image_root): |
|
""" |
|
Register a dataset in LVIS's json annotation format for instance detection and segmentation. |
|
|
|
Args: |
|
name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train". |
|
metadata (dict): extra metadata associated with this dataset. It can be an empty dict. |
|
json_file (str): path to the json instance annotation file. |
|
image_root (str or path-like): directory which contains all the images. |
|
""" |
|
DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name)) |
|
MetadataCatalog.get(name).set( |
|
json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata |
|
) |
|
|
|
|
|
def load_lvis_json( |
|
json_file, image_root, dataset_name=None, extra_annotation_keys=None |
|
): |
|
""" |
|
Load a json file in LVIS's annotation format. |
|
|
|
Args: |
|
json_file (str): full path to the LVIS json annotation file. |
|
image_root (str): the directory where the images in this json file exists. |
|
dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train"). |
|
If provided, this function will put "thing_classes" into the metadata |
|
associated with this dataset. |
|
extra_annotation_keys (list[str]): list of per-annotation keys that should also be |
|
loaded into the dataset dict (besides "bbox", "bbox_mode", "category_id", |
|
"segmentation"). The values for these keys will be returned as-is. |
|
|
|
Returns: |
|
list[dict]: a list of dicts in Detectron2 standard format. (See |
|
`Using Custom Datasets </tutorials/datasets.html>`_ ) |
|
|
|
Notes: |
|
1. This function does not read the image files. |
|
The results do not have the "image" field. |
|
""" |
|
from lvis import LVIS |
|
|
|
json_file = PathManager.get_local_path(json_file) |
|
|
|
timer = Timer() |
|
lvis_api = LVIS(json_file) |
|
if timer.seconds() > 1: |
|
logger.info( |
|
"Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) |
|
) |
|
|
|
if dataset_name is not None: |
|
meta = get_lvis_instances_meta(dataset_name) |
|
MetadataCatalog.get(dataset_name).set(**meta) |
|
|
|
|
|
img_ids = sorted(lvis_api.imgs.keys()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imgs = lvis_api.load_imgs(img_ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] |
|
|
|
|
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] |
|
assert len(set(ann_ids)) == len( |
|
ann_ids |
|
), "Annotation ids in '{}' are not unique".format(json_file) |
|
|
|
imgs_anns = list(zip(imgs, anns)) |
|
|
|
logger.info( |
|
"Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file) |
|
) |
|
|
|
if extra_annotation_keys: |
|
logger.info( |
|
"The following extra annotation keys will be loaded: {} ".format( |
|
extra_annotation_keys |
|
) |
|
) |
|
else: |
|
extra_annotation_keys = [] |
|
|
|
def get_file_name(img_root, img_dict): |
|
|
|
|
|
|
|
split_folder, file_name = img_dict["coco_url"].split("/")[-2:] |
|
return os.path.join(img_root + split_folder, file_name) |
|
|
|
dataset_dicts = [] |
|
|
|
for (img_dict, anno_dict_list) in imgs_anns: |
|
record = {} |
|
record["file_name"] = get_file_name(image_root, img_dict) |
|
record["height"] = img_dict["height"] |
|
record["width"] = img_dict["width"] |
|
record["not_exhaustive_category_ids"] = img_dict.get( |
|
"not_exhaustive_category_ids", [] |
|
) |
|
record["neg_category_ids"] = img_dict.get("neg_category_ids", []) |
|
image_id = record["image_id"] = img_dict["id"] |
|
|
|
objs = [] |
|
for anno in anno_dict_list: |
|
|
|
|
|
|
|
assert anno["image_id"] == image_id |
|
obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} |
|
|
|
|
|
if dataset_name is not None and "thing_dataset_id_to_contiguous_id" in meta: |
|
obj["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ |
|
anno["category_id"] |
|
] |
|
else: |
|
obj["category_id"] = ( |
|
anno["category_id"] - 1 |
|
) |
|
segm = anno["segmentation"] |
|
|
|
valid_segm = [ |
|
poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6 |
|
] |
|
assert len(segm) == len( |
|
valid_segm |
|
), "Annotation contains an invalid polygon with < 3 points" |
|
assert len(segm) > 0 |
|
obj["segmentation"] = segm |
|
for extra_ann_key in extra_annotation_keys: |
|
obj[extra_ann_key] = anno[extra_ann_key] |
|
objs.append(obj) |
|
record["annotations"] = objs |
|
dataset_dicts.append(record) |
|
|
|
return dataset_dicts |
|
|
|
|
|
def get_lvis_instances_meta(dataset_name): |
|
""" |
|
Load LVIS metadata. |
|
|
|
Args: |
|
dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5"). |
|
|
|
Returns: |
|
dict: LVIS metadata with keys: thing_classes |
|
""" |
|
if "cocofied" in dataset_name: |
|
return _get_coco_instances_meta() |
|
if "v0.5" in dataset_name: |
|
return _get_lvis_instances_meta_v0_5() |
|
elif "v1" in dataset_name: |
|
return _get_lvis_instances_meta_v1() |
|
raise ValueError("No built-in metadata for dataset {}".format(dataset_name)) |
|
|
|
|
|
def _get_lvis_instances_meta_v0_5(): |
|
assert len(LVIS_V0_5_CATEGORIES) == 1230 |
|
cat_ids = [k["id"] for k in LVIS_V0_5_CATEGORIES] |
|
assert min(cat_ids) == 1 and max(cat_ids) == len( |
|
cat_ids |
|
), "Category ids are not in [1, #categories], as expected" |
|
|
|
lvis_categories = sorted(LVIS_V0_5_CATEGORIES, key=lambda x: x["id"]) |
|
thing_classes = [k["synonyms"][0] for k in lvis_categories] |
|
meta = {"thing_classes": thing_classes} |
|
return meta |
|
|
|
|
|
def _get_lvis_instances_meta_v1(): |
|
assert len(LVIS_V1_CATEGORIES) == 1203 |
|
cat_ids = [k["id"] for k in LVIS_V1_CATEGORIES] |
|
assert min(cat_ids) == 1 and max(cat_ids) == len( |
|
cat_ids |
|
), "Category ids are not in [1, #categories], as expected" |
|
|
|
lvis_categories = sorted(LVIS_V1_CATEGORIES, key=lambda x: x["id"]) |
|
thing_classes = [k["synonyms"][0] for k in lvis_categories] |
|
meta = { |
|
"thing_classes": thing_classes, |
|
"class_image_count": LVIS_V1_CATEGORY_IMAGE_COUNT, |
|
} |
|
return meta |
|
|
|
|
|
def main() -> None: |
|
global logger |
|
""" |
|
Test the LVIS json dataset loader. |
|
|
|
Usage: |
|
python -m detectron2.data.datasets.lvis \ |
|
path/to/json path/to/image_root dataset_name vis_limit |
|
""" |
|
import sys |
|
|
|
import detectron2.data.datasets |
|
import numpy as np |
|
from detectron2.utils.logger import setup_logger |
|
from detectron2.utils.visualizer import Visualizer |
|
from PIL import Image |
|
|
|
logger = setup_logger(name=__name__) |
|
meta = MetadataCatalog.get(sys.argv[3]) |
|
|
|
dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3]) |
|
logger.info("Done loading {} samples.".format(len(dicts))) |
|
|
|
dirname = "lvis-data-vis" |
|
os.makedirs(dirname, exist_ok=True) |
|
for d in dicts[: int(sys.argv[4])]: |
|
img = np.array(Image.open(d["file_name"])) |
|
visualizer = Visualizer(img, metadata=meta) |
|
vis = visualizer.draw_dataset_dict(d) |
|
fpath = os.path.join(dirname, os.path.basename(d["file_name"])) |
|
vis.save(fpath) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|