|
|
|
|
|
|
|
import inspect |
|
import numpy as np |
|
import pprint |
|
from typing import Any, List, Optional, Tuple, Union |
|
from fvcore.transforms.transform import Transform, TransformList |
|
|
|
""" |
|
See "Data Augmentation" tutorial for an overview of the system: |
|
https://detectron2.readthedocs.io/tutorials/augmentation.html |
|
""" |
|
|
|
|
|
__all__ = [ |
|
"Augmentation", |
|
"AugmentationList", |
|
"AugInput", |
|
"TransformGen", |
|
"apply_transform_gens", |
|
"StandardAugInput", |
|
"apply_augmentations", |
|
] |
|
|
|
|
|
def _check_img_dtype(img): |
|
assert isinstance(img, np.ndarray), "[Augmentation] Needs an numpy array, but got a {}!".format( |
|
type(img) |
|
) |
|
assert not isinstance(img.dtype, np.integer) or ( |
|
img.dtype == np.uint8 |
|
), "[Augmentation] Got image of type {}, use uint8 or floating points instead!".format( |
|
img.dtype |
|
) |
|
assert img.ndim in [2, 3], img.ndim |
|
|
|
|
|
def _get_aug_input_args(aug, aug_input) -> List[Any]: |
|
""" |
|
Get the arguments to be passed to ``aug.get_transform`` from the input ``aug_input``. |
|
""" |
|
if aug.input_args is None: |
|
|
|
prms = list(inspect.signature(aug.get_transform).parameters.items()) |
|
|
|
|
|
|
|
if len(prms) == 1: |
|
names = ("image",) |
|
else: |
|
names = [] |
|
for name, prm in prms: |
|
if prm.kind in ( |
|
inspect.Parameter.VAR_POSITIONAL, |
|
inspect.Parameter.VAR_KEYWORD, |
|
): |
|
raise TypeError( |
|
f""" \ |
|
The default implementation of `{type(aug)}.__call__` does not allow \ |
|
`{type(aug)}.get_transform` to use variable-length arguments (*args, **kwargs)! \ |
|
If arguments are unknown, reimplement `__call__` instead. \ |
|
""" |
|
) |
|
names.append(name) |
|
aug.input_args = tuple(names) |
|
|
|
args = [] |
|
for f in aug.input_args: |
|
try: |
|
args.append(getattr(aug_input, f)) |
|
except AttributeError as e: |
|
raise AttributeError( |
|
f"{type(aug)}.get_transform needs input attribute '{f}', " |
|
f"but it is not an attribute of {type(aug_input)}!" |
|
) from e |
|
return args |
|
|
|
|
|
class Augmentation: |
|
""" |
|
Augmentation defines (often random) policies/strategies to generate :class:`Transform` |
|
from data. It is often used for pre-processing of input data. |
|
|
|
A "policy" that generates a :class:`Transform` may, in the most general case, |
|
need arbitrary information from input data in order to determine what transforms |
|
to apply. Therefore, each :class:`Augmentation` instance defines the arguments |
|
needed by its :meth:`get_transform` method. When called with the positional arguments, |
|
the :meth:`get_transform` method executes the policy. |
|
|
|
Note that :class:`Augmentation` defines the policies to create a :class:`Transform`, |
|
but not how to execute the actual transform operations to those data. |
|
Its :meth:`__call__` method will use :meth:`AugInput.transform` to execute the transform. |
|
|
|
The returned `Transform` object is meant to describe deterministic transformation, which means |
|
it can be re-applied on associated data, e.g. the geometry of an image and its segmentation |
|
masks need to be transformed together. |
|
(If such re-application is not needed, then determinism is not a crucial requirement.) |
|
""" |
|
|
|
input_args: Optional[Tuple[str]] = None |
|
""" |
|
Stores the attribute names needed by :meth:`get_transform`, e.g. ``("image", "sem_seg")``. |
|
By default, it is just a tuple of argument names in :meth:`self.get_transform`, which often only |
|
contain "image". As long as the argument name convention is followed, there is no need for |
|
users to touch this attribute. |
|
""" |
|
|
|
def _init(self, params=None): |
|
if params: |
|
for k, v in params.items(): |
|
if k != "self" and not k.startswith("_"): |
|
setattr(self, k, v) |
|
|
|
def get_transform(self, *args) -> Transform: |
|
""" |
|
Execute the policy based on input data, and decide what transform to apply to inputs. |
|
|
|
Args: |
|
args: Any fixed-length positional arguments. By default, the name of the arguments |
|
should exist in the :class:`AugInput` to be used. |
|
|
|
Returns: |
|
Transform: Returns the deterministic transform to apply to the input. |
|
|
|
Examples: |
|
:: |
|
class MyAug: |
|
# if a policy needs to know both image and semantic segmentation |
|
def get_transform(image, sem_seg) -> T.Transform: |
|
pass |
|
tfm: Transform = MyAug().get_transform(image, sem_seg) |
|
new_image = tfm.apply_image(image) |
|
|
|
Notes: |
|
Users can freely use arbitrary new argument names in custom |
|
:meth:`get_transform` method, as long as they are available in the |
|
input data. In detectron2 we use the following convention: |
|
|
|
* image: (H,W) or (H,W,C) ndarray of type uint8 in range [0, 255], or |
|
floating point in range [0, 1] or [0, 255]. |
|
* boxes: (N,4) ndarray of float32. It represents the instance bounding boxes |
|
of N instances. Each is in XYXY format in unit of absolute coordinates. |
|
* sem_seg: (H,W) ndarray of type uint8. Each element is an integer label of pixel. |
|
|
|
We do not specify convention for other types and do not include builtin |
|
:class:`Augmentation` that uses other types in detectron2. |
|
""" |
|
raise NotImplementedError |
|
|
|
def __call__(self, aug_input) -> Transform: |
|
""" |
|
Augment the given `aug_input` **in-place**, and return the transform that's used. |
|
|
|
This method will be called to apply the augmentation. In most augmentation, it |
|
is enough to use the default implementation, which calls :meth:`get_transform` |
|
using the inputs. But a subclass can overwrite it to have more complicated logic. |
|
|
|
Args: |
|
aug_input (AugInput): an object that has attributes needed by this augmentation |
|
(defined by ``self.get_transform``). Its ``transform`` method will be called |
|
to in-place transform it. |
|
|
|
Returns: |
|
Transform: the transform that is applied on the input. |
|
""" |
|
args = _get_aug_input_args(self, aug_input) |
|
tfm = self.get_transform(*args) |
|
assert isinstance(tfm, (Transform, TransformList)), ( |
|
f"{type(self)}.get_transform must return an instance of Transform! " |
|
f"Got {type(tfm)} instead." |
|
) |
|
aug_input.transform(tfm) |
|
return tfm |
|
|
|
def _rand_range(self, low=1.0, high=None, size=None): |
|
""" |
|
Uniform float random number between low and high. |
|
""" |
|
if high is None: |
|
low, high = 0, low |
|
if size is None: |
|
size = [] |
|
return np.random.uniform(low, high, size) |
|
|
|
def __repr__(self): |
|
""" |
|
Produce something like: |
|
"MyAugmentation(field1={self.field1}, field2={self.field2})" |
|
""" |
|
try: |
|
sig = inspect.signature(self.__init__) |
|
classname = type(self).__name__ |
|
argstr = [] |
|
for name, param in sig.parameters.items(): |
|
assert ( |
|
param.kind != param.VAR_POSITIONAL and param.kind != param.VAR_KEYWORD |
|
), "The default __repr__ doesn't support *args or **kwargs" |
|
assert hasattr(self, name), ( |
|
"Attribute {} not found! " |
|
"Default __repr__ only works if attributes match the constructor.".format(name) |
|
) |
|
attr = getattr(self, name) |
|
default = param.default |
|
if default is attr: |
|
continue |
|
attr_str = pprint.pformat(attr) |
|
if "\n" in attr_str: |
|
|
|
attr_str = "..." |
|
argstr.append("{}={}".format(name, attr_str)) |
|
return "{}({})".format(classname, ", ".join(argstr)) |
|
except AssertionError: |
|
return super().__repr__() |
|
|
|
__str__ = __repr__ |
|
|
|
|
|
class _TransformToAug(Augmentation): |
|
def __init__(self, tfm: Transform): |
|
self.tfm = tfm |
|
|
|
def get_transform(self, *args): |
|
return self.tfm |
|
|
|
def __repr__(self): |
|
return repr(self.tfm) |
|
|
|
__str__ = __repr__ |
|
|
|
|
|
def _transform_to_aug(tfm_or_aug): |
|
""" |
|
Wrap Transform into Augmentation. |
|
Private, used internally to implement augmentations. |
|
""" |
|
assert isinstance(tfm_or_aug, (Transform, Augmentation)), tfm_or_aug |
|
if isinstance(tfm_or_aug, Augmentation): |
|
return tfm_or_aug |
|
else: |
|
return _TransformToAug(tfm_or_aug) |
|
|
|
|
|
class AugmentationList(Augmentation): |
|
""" |
|
Apply a sequence of augmentations. |
|
|
|
It has ``__call__`` method to apply the augmentations. |
|
|
|
Note that :meth:`get_transform` method is impossible (will throw error if called) |
|
for :class:`AugmentationList`, because in order to apply a sequence of augmentations, |
|
the kth augmentation must be applied first, to provide inputs needed by the (k+1)th |
|
augmentation. |
|
""" |
|
|
|
def __init__(self, augs): |
|
""" |
|
Args: |
|
augs (list[Augmentation or Transform]): |
|
""" |
|
super().__init__() |
|
self.augs = [_transform_to_aug(x) for x in augs] |
|
|
|
def __call__(self, aug_input) -> TransformList: |
|
tfms = [] |
|
for x in self.augs: |
|
tfm = x(aug_input) |
|
tfms.append(tfm) |
|
return TransformList(tfms) |
|
|
|
def __repr__(self): |
|
msgs = [str(x) for x in self.augs] |
|
return "AugmentationList[{}]".format(", ".join(msgs)) |
|
|
|
__str__ = __repr__ |
|
|
|
|
|
class AugInput: |
|
""" |
|
Input that can be used with :meth:`Augmentation.__call__`. |
|
This is a standard implementation for the majority of use cases. |
|
This class provides the standard attributes **"image", "boxes", "sem_seg"** |
|
defined in :meth:`__init__` and they may be needed by different augmentations. |
|
Most augmentation policies do not need attributes beyond these three. |
|
|
|
After applying augmentations to these attributes (using :meth:`AugInput.transform`), |
|
the returned transforms can then be used to transform other data structures that users have. |
|
|
|
Examples: |
|
:: |
|
input = AugInput(image, boxes=boxes) |
|
tfms = augmentation(input) |
|
transformed_image = input.image |
|
transformed_boxes = input.boxes |
|
transformed_other_data = tfms.apply_other(other_data) |
|
|
|
An extended project that works with new data types may implement augmentation policies |
|
that need other inputs. An algorithm may need to transform inputs in a way different |
|
from the standard approach defined in this class. In those rare situations, users can |
|
implement a class similar to this class, that satify the following condition: |
|
|
|
* The input must provide access to these data in the form of attribute access |
|
(``getattr``). For example, if an :class:`Augmentation` to be applied needs "image" |
|
and "sem_seg" arguments, its input must have the attribute "image" and "sem_seg". |
|
* The input must have a ``transform(tfm: Transform) -> None`` method which |
|
in-place transforms all its attributes. |
|
""" |
|
|
|
|
|
def __init__( |
|
self, |
|
image: np.ndarray, |
|
*, |
|
boxes: Optional[np.ndarray] = None, |
|
sem_seg: Optional[np.ndarray] = None, |
|
): |
|
""" |
|
Args: |
|
image (ndarray): (H,W) or (H,W,C) ndarray of type uint8 in range [0, 255], or |
|
floating point in range [0, 1] or [0, 255]. The meaning of C is up |
|
to users. |
|
boxes (ndarray or None): Nx4 float32 boxes in XYXY_ABS mode |
|
sem_seg (ndarray or None): HxW uint8 semantic segmentation mask. Each element |
|
is an integer label of pixel. |
|
""" |
|
_check_img_dtype(image) |
|
self.image = image |
|
self.boxes = boxes |
|
self.sem_seg = sem_seg |
|
|
|
def transform(self, tfm: Transform) -> None: |
|
""" |
|
In-place transform all attributes of this class. |
|
|
|
By "in-place", it means after calling this method, accessing an attribute such |
|
as ``self.image`` will return transformed data. |
|
""" |
|
self.image = tfm.apply_image(self.image) |
|
if self.boxes is not None: |
|
self.boxes = tfm.apply_box(self.boxes) |
|
if self.sem_seg is not None: |
|
self.sem_seg = tfm.apply_segmentation(self.sem_seg) |
|
|
|
def apply_augmentations( |
|
self, augmentations: List[Union[Augmentation, Transform]] |
|
) -> TransformList: |
|
""" |
|
Equivalent of ``AugmentationList(augmentations)(self)`` |
|
""" |
|
return AugmentationList(augmentations)(self) |
|
|
|
|
|
def apply_augmentations(augmentations: List[Union[Transform, Augmentation]], inputs): |
|
""" |
|
Use ``T.AugmentationList(augmentations)(inputs)`` instead. |
|
""" |
|
if isinstance(inputs, np.ndarray): |
|
|
|
image_only = True |
|
inputs = AugInput(inputs) |
|
else: |
|
image_only = False |
|
tfms = inputs.apply_augmentations(augmentations) |
|
return inputs.image if image_only else inputs, tfms |
|
|
|
|
|
apply_transform_gens = apply_augmentations |
|
""" |
|
Alias for backward-compatibility. |
|
""" |
|
|
|
TransformGen = Augmentation |
|
""" |
|
Alias for Augmentation, since it is something that generates :class:`Transform`s |
|
""" |
|
|
|
StandardAugInput = AugInput |
|
""" |
|
Alias for compatibility. It's not worth the complexity to have two classes. |
|
""" |
|
|