|
|
|
|
|
|
|
""" |
|
This file contains components with some default boilerplate logic user may need |
|
in training / testing. They will not work for everyone, but many users may find them useful. |
|
|
|
The behavior of functions/classes in this file is subject to change, |
|
since they are meant to represent the "common default behavior" people need in their projects. |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
import weakref |
|
from collections import OrderedDict |
|
from typing import Optional |
|
import torch |
|
from fvcore.nn.precise_bn import get_bn_modules |
|
from omegaconf import OmegaConf |
|
from torch.nn.parallel import DistributedDataParallel |
|
|
|
import detectron2.data.transforms as T |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import CfgNode, LazyConfig |
|
from detectron2.data import ( |
|
MetadataCatalog, |
|
build_detection_test_loader, |
|
build_detection_train_loader, |
|
) |
|
from detectron2.evaluation import ( |
|
DatasetEvaluator, |
|
inference_on_dataset, |
|
print_csv_format, |
|
verify_results, |
|
) |
|
from detectron2.modeling import build_model |
|
from detectron2.solver import build_lr_scheduler, build_optimizer |
|
from detectron2.utils import comm |
|
from detectron2.utils.collect_env import collect_env_info |
|
from detectron2.utils.env import seed_all_rng |
|
from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter |
|
from detectron2.utils.file_io import PathManager |
|
from detectron2.utils.logger import setup_logger |
|
|
|
from . import hooks |
|
from .train_loop import AMPTrainer, SimpleTrainer, TrainerBase |
|
|
|
__all__ = [ |
|
"create_ddp_model", |
|
"default_argument_parser", |
|
"default_setup", |
|
"default_writers", |
|
"DefaultPredictor", |
|
"DefaultTrainer", |
|
] |
|
|
|
|
|
def create_ddp_model(model, *, fp16_compression=False, **kwargs): |
|
""" |
|
Create a DistributedDataParallel model if there are >1 processes. |
|
|
|
Args: |
|
model: a torch.nn.Module |
|
fp16_compression: add fp16 compression hooks to the ddp object. |
|
See more at https://pytorch.org/docs/stable/ddp_comm_hooks.html#torch.distributed.algorithms.ddp_comm_hooks.default_hooks.fp16_compress_hook |
|
kwargs: other arguments of :module:`torch.nn.parallel.DistributedDataParallel`. |
|
""" |
|
if comm.get_world_size() == 1: |
|
return model |
|
if "device_ids" not in kwargs: |
|
kwargs["device_ids"] = [comm.get_local_rank()] |
|
ddp = DistributedDataParallel(model, **kwargs) |
|
if fp16_compression: |
|
from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks |
|
|
|
ddp.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook) |
|
return ddp |
|
|
|
|
|
def default_argument_parser(epilog=None): |
|
""" |
|
Create a parser with some common arguments used by detectron2 users. |
|
|
|
Args: |
|
epilog (str): epilog passed to ArgumentParser describing the usage. |
|
|
|
Returns: |
|
argparse.ArgumentParser: |
|
""" |
|
parser = argparse.ArgumentParser( |
|
epilog=epilog |
|
or f""" |
|
Examples: |
|
|
|
Run on single machine: |
|
$ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml |
|
|
|
Change some config options: |
|
$ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001 |
|
|
|
Run on multiple machines: |
|
(machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags] |
|
(machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags] |
|
""", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
) |
|
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") |
|
parser.add_argument( |
|
"--resume", |
|
action="store_true", |
|
help="Whether to attempt to resume from the checkpoint directory. " |
|
"See documentation of `DefaultTrainer.resume_or_load()` for what it means.", |
|
) |
|
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only") |
|
parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*") |
|
parser.add_argument("--num-machines", type=int, default=1, help="total number of machines") |
|
parser.add_argument( |
|
"--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)" |
|
) |
|
|
|
|
|
|
|
|
|
port = 2**15 + 2**14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2**14 |
|
parser.add_argument( |
|
"--dist-url", |
|
default="tcp://127.0.0.1:{}".format(port), |
|
help="initialization URL for pytorch distributed backend. See " |
|
"https://pytorch.org/docs/stable/distributed.html for details.", |
|
) |
|
parser.add_argument( |
|
"opts", |
|
help=""" |
|
Modify config options at the end of the command. For Yacs configs, use |
|
space-separated "PATH.KEY VALUE" pairs. |
|
For python-based LazyConfig, use "path.key=value". |
|
""".strip(), |
|
default=None, |
|
nargs=argparse.REMAINDER, |
|
) |
|
return parser |
|
|
|
|
|
def _try_get_key(cfg, *keys, default=None): |
|
""" |
|
Try select keys from cfg until the first key that exists. Otherwise return default. |
|
""" |
|
if isinstance(cfg, CfgNode): |
|
cfg = OmegaConf.create(cfg.dump()) |
|
for k in keys: |
|
none = object() |
|
p = OmegaConf.select(cfg, k, default=none) |
|
if p is not none: |
|
return p |
|
return default |
|
|
|
|
|
def _highlight(code, filename): |
|
try: |
|
import pygments |
|
except ImportError: |
|
return code |
|
|
|
from pygments.lexers import Python3Lexer, YamlLexer |
|
from pygments.formatters import Terminal256Formatter |
|
|
|
lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer() |
|
code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai")) |
|
return code |
|
|
|
|
|
def default_setup(cfg, args): |
|
""" |
|
Perform some basic common setups at the beginning of a job, including: |
|
|
|
1. Set up the detectron2 logger |
|
2. Log basic information about environment, cmdline arguments, and config |
|
3. Backup the config to the output directory |
|
|
|
Args: |
|
cfg (CfgNode or omegaconf.DictConfig): the full config to be used |
|
args (argparse.NameSpace): the command line arguments to be logged |
|
""" |
|
output_dir = _try_get_key(cfg, "OUTPUT_DIR", "output_dir", "train.output_dir") |
|
if comm.is_main_process() and output_dir: |
|
PathManager.mkdirs(output_dir) |
|
|
|
rank = comm.get_rank() |
|
setup_logger(output_dir, distributed_rank=rank, name="fvcore") |
|
logger = setup_logger(output_dir, distributed_rank=rank) |
|
|
|
logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size())) |
|
logger.info("Environment info:\n" + collect_env_info()) |
|
|
|
logger.info("Command line arguments: " + str(args)) |
|
if hasattr(args, "config_file") and args.config_file != "": |
|
logger.info( |
|
"Contents of args.config_file={}:\n{}".format( |
|
args.config_file, |
|
_highlight(PathManager.open(args.config_file, "r").read(), args.config_file), |
|
) |
|
) |
|
|
|
if comm.is_main_process() and output_dir: |
|
|
|
|
|
path = os.path.join(output_dir, "config.yaml") |
|
if isinstance(cfg, CfgNode): |
|
logger.info("Running with full config:\n{}".format(_highlight(cfg.dump(), ".yaml"))) |
|
with PathManager.open(path, "w") as f: |
|
f.write(cfg.dump()) |
|
else: |
|
LazyConfig.save(cfg, path) |
|
logger.info("Full config saved to {}".format(path)) |
|
|
|
|
|
seed = _try_get_key(cfg, "SEED", "train.seed", default=-1) |
|
seed_all_rng(None if seed < 0 else seed + rank) |
|
|
|
|
|
|
|
if not (hasattr(args, "eval_only") and args.eval_only): |
|
torch.backends.cudnn.benchmark = _try_get_key( |
|
cfg, "CUDNN_BENCHMARK", "train.cudnn_benchmark", default=False |
|
) |
|
|
|
|
|
def default_writers(output_dir: str, max_iter: Optional[int] = None): |
|
""" |
|
Build a list of :class:`EventWriter` to be used. |
|
It now consists of a :class:`CommonMetricPrinter`, |
|
:class:`TensorboardXWriter` and :class:`JSONWriter`. |
|
|
|
Args: |
|
output_dir: directory to store JSON metrics and tensorboard events |
|
max_iter: the total number of iterations |
|
|
|
Returns: |
|
list[EventWriter]: a list of :class:`EventWriter` objects. |
|
""" |
|
PathManager.mkdirs(output_dir) |
|
return [ |
|
|
|
CommonMetricPrinter(max_iter), |
|
JSONWriter(os.path.join(output_dir, "metrics.json")), |
|
TensorboardXWriter(output_dir), |
|
] |
|
|
|
|
|
class DefaultPredictor: |
|
""" |
|
Create a simple end-to-end predictor with the given config that runs on |
|
single device for a single input image. |
|
|
|
Compared to using the model directly, this class does the following additions: |
|
|
|
1. Load checkpoint from `cfg.MODEL.WEIGHTS`. |
|
2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`. |
|
3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`. |
|
4. Take one input image and produce a single output, instead of a batch. |
|
|
|
This is meant for simple demo purposes, so it does the above steps automatically. |
|
This is not meant for benchmarks or running complicated inference logic. |
|
If you'd like to do anything more complicated, please refer to its source code as |
|
examples to build and use the model manually. |
|
|
|
Attributes: |
|
metadata (Metadata): the metadata of the underlying dataset, obtained from |
|
cfg.DATASETS.TEST. |
|
|
|
Examples: |
|
:: |
|
pred = DefaultPredictor(cfg) |
|
inputs = cv2.imread("input.jpg") |
|
outputs = pred(inputs) |
|
""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg.clone() |
|
self.model = build_model(self.cfg) |
|
self.model.eval() |
|
if len(cfg.DATASETS.TEST): |
|
self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) |
|
|
|
checkpointer = DetectionCheckpointer(self.model) |
|
checkpointer.load(cfg.MODEL.WEIGHTS) |
|
|
|
self.aug = T.ResizeShortestEdge( |
|
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST |
|
) |
|
|
|
self.input_format = cfg.INPUT.FORMAT |
|
assert self.input_format in ["RGB", "BGR"], self.input_format |
|
|
|
def __call__(self, original_image): |
|
""" |
|
Args: |
|
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). |
|
|
|
Returns: |
|
predictions (dict): |
|
the output of the model for one image only. |
|
See :doc:`/tutorials/models` for details about the format. |
|
""" |
|
with torch.no_grad(): |
|
|
|
if self.input_format == "RGB": |
|
|
|
original_image = original_image[:, :, ::-1] |
|
height, width = original_image.shape[:2] |
|
image = self.aug.get_transform(original_image).apply_image(original_image) |
|
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) |
|
image.to(self.cfg.MODEL.DEVICE) |
|
|
|
inputs = {"image": image, "height": height, "width": width} |
|
|
|
predictions = self.model([inputs])[0] |
|
return predictions |
|
|
|
|
|
class DefaultTrainer(TrainerBase): |
|
""" |
|
A trainer with default training logic. It does the following: |
|
|
|
1. Create a :class:`SimpleTrainer` using model, optimizer, dataloader |
|
defined by the given config. Create a LR scheduler defined by the config. |
|
2. Load the last checkpoint or `cfg.MODEL.WEIGHTS`, if exists, when |
|
`resume_or_load` is called. |
|
3. Register a few common hooks defined by the config. |
|
|
|
It is created to simplify the **standard model training workflow** and reduce code boilerplate |
|
for users who only need the standard training workflow, with standard features. |
|
It means this class makes *many assumptions* about your training logic that |
|
may easily become invalid in a new research. In fact, any assumptions beyond those made in the |
|
:class:`SimpleTrainer` are too much for research. |
|
|
|
The code of this class has been annotated about restrictive assumptions it makes. |
|
When they do not work for you, you're encouraged to: |
|
|
|
1. Overwrite methods of this class, OR: |
|
2. Use :class:`SimpleTrainer`, which only does minimal SGD training and |
|
nothing else. You can then add your own hooks if needed. OR: |
|
3. Write your own training loop similar to `tools/plain_train_net.py`. |
|
|
|
See the :doc:`/tutorials/training` tutorials for more details. |
|
|
|
Note that the behavior of this class, like other functions/classes in |
|
this file, is not stable, since it is meant to represent the "common default behavior". |
|
It is only guaranteed to work well with the standard models and training workflow in detectron2. |
|
To obtain more stable behavior, write your own training logic with other public APIs. |
|
|
|
Examples: |
|
:: |
|
trainer = DefaultTrainer(cfg) |
|
trainer.resume_or_load() # load last checkpoint or MODEL.WEIGHTS |
|
trainer.train() |
|
|
|
Attributes: |
|
scheduler: |
|
checkpointer (DetectionCheckpointer): |
|
cfg (CfgNode): |
|
""" |
|
|
|
def __init__(self, cfg): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
""" |
|
super().__init__() |
|
logger = logging.getLogger("detectron2") |
|
if not logger.isEnabledFor(logging.INFO): |
|
setup_logger() |
|
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size()) |
|
|
|
|
|
model = self.build_model(cfg) |
|
optimizer = self.build_optimizer(cfg, model) |
|
data_loader = self.build_train_loader(cfg) |
|
|
|
model = create_ddp_model(model, broadcast_buffers=False) |
|
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( |
|
model, data_loader, optimizer |
|
) |
|
|
|
self.scheduler = self.build_lr_scheduler(cfg, optimizer) |
|
self.checkpointer = DetectionCheckpointer( |
|
|
|
model, |
|
cfg.OUTPUT_DIR, |
|
trainer=weakref.proxy(self), |
|
) |
|
self.start_iter = 0 |
|
self.max_iter = cfg.SOLVER.MAX_ITER |
|
self.cfg = cfg |
|
|
|
self.register_hooks(self.build_hooks()) |
|
|
|
def resume_or_load(self, resume=True): |
|
""" |
|
If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by |
|
a `last_checkpoint` file), resume from the file. Resuming means loading all |
|
available states (eg. optimizer and scheduler) and update iteration counter |
|
from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. |
|
|
|
Otherwise, this is considered as an independent training. The method will load model |
|
weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start |
|
from iteration 0. |
|
|
|
Args: |
|
resume (bool): whether to do resume or not |
|
""" |
|
self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume) |
|
if resume and self.checkpointer.has_checkpoint(): |
|
|
|
|
|
self.start_iter = self.iter + 1 |
|
|
|
def build_hooks(self): |
|
""" |
|
Build a list of default hooks, including timing, evaluation, |
|
checkpointing, lr scheduling, precise BN, writing events. |
|
|
|
Returns: |
|
list[HookBase]: |
|
""" |
|
cfg = self.cfg.clone() |
|
cfg.defrost() |
|
cfg.DATALOADER.NUM_WORKERS = 0 |
|
|
|
ret = [ |
|
hooks.IterationTimer(), |
|
hooks.LRScheduler(), |
|
hooks.PreciseBN( |
|
|
|
cfg.TEST.EVAL_PERIOD, |
|
self.model, |
|
|
|
self.build_train_loader(cfg), |
|
cfg.TEST.PRECISE_BN.NUM_ITER, |
|
) |
|
if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) |
|
else None, |
|
] |
|
|
|
|
|
|
|
|
|
|
|
if comm.is_main_process(): |
|
ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD)) |
|
|
|
def test_and_save_results(): |
|
self._last_eval_results = self.test(self.cfg, self.model) |
|
return self._last_eval_results |
|
|
|
|
|
|
|
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) |
|
|
|
if comm.is_main_process(): |
|
|
|
|
|
ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) |
|
return ret |
|
|
|
def build_writers(self): |
|
""" |
|
Build a list of writers to be used using :func:`default_writers()`. |
|
If you'd like a different list of writers, you can overwrite it in |
|
your trainer. |
|
|
|
Returns: |
|
list[EventWriter]: a list of :class:`EventWriter` objects. |
|
""" |
|
return default_writers(self.cfg.OUTPUT_DIR, self.max_iter) |
|
|
|
def train(self): |
|
""" |
|
Run training. |
|
|
|
Returns: |
|
OrderedDict of results, if evaluation is enabled. Otherwise None. |
|
""" |
|
super().train(self.start_iter, self.max_iter) |
|
if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process(): |
|
assert hasattr( |
|
self, "_last_eval_results" |
|
), "No evaluation results obtained during training!" |
|
verify_results(self.cfg, self._last_eval_results) |
|
return self._last_eval_results |
|
|
|
def run_step(self): |
|
self._trainer.iter = self.iter |
|
self._trainer.run_step() |
|
|
|
def state_dict(self): |
|
ret = super().state_dict() |
|
ret["_trainer"] = self._trainer.state_dict() |
|
return ret |
|
|
|
def load_state_dict(self, state_dict): |
|
super().load_state_dict(state_dict) |
|
self._trainer.load_state_dict(state_dict["_trainer"]) |
|
|
|
@classmethod |
|
def build_model(cls, cfg): |
|
""" |
|
Returns: |
|
torch.nn.Module: |
|
|
|
It now calls :func:`detectron2.modeling.build_model`. |
|
Overwrite it if you'd like a different model. |
|
""" |
|
model = build_model(cfg) |
|
logger = logging.getLogger(__name__) |
|
logger.info("Model:\n{}".format(model)) |
|
return model |
|
|
|
@classmethod |
|
def build_optimizer(cls, cfg, model): |
|
""" |
|
Returns: |
|
torch.optim.Optimizer: |
|
|
|
It now calls :func:`detectron2.solver.build_optimizer`. |
|
Overwrite it if you'd like a different optimizer. |
|
""" |
|
return build_optimizer(cfg, model) |
|
|
|
@classmethod |
|
def build_lr_scheduler(cls, cfg, optimizer): |
|
""" |
|
It now calls :func:`detectron2.solver.build_lr_scheduler`. |
|
Overwrite it if you'd like a different scheduler. |
|
""" |
|
return build_lr_scheduler(cfg, optimizer) |
|
|
|
@classmethod |
|
def build_train_loader(cls, cfg): |
|
""" |
|
Returns: |
|
iterable |
|
|
|
It now calls :func:`detectron2.data.build_detection_train_loader`. |
|
Overwrite it if you'd like a different data loader. |
|
""" |
|
return build_detection_train_loader(cfg) |
|
|
|
@classmethod |
|
def build_test_loader(cls, cfg, dataset_name): |
|
""" |
|
Returns: |
|
iterable |
|
|
|
It now calls :func:`detectron2.data.build_detection_test_loader`. |
|
Overwrite it if you'd like a different data loader. |
|
""" |
|
return build_detection_test_loader(cfg, dataset_name) |
|
|
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name): |
|
""" |
|
Returns: |
|
DatasetEvaluator or None |
|
|
|
It is not implemented by default. |
|
""" |
|
raise NotImplementedError( |
|
""" |
|
If you want DefaultTrainer to automatically run evaluation, |
|
please implement `build_evaluator()` in subclasses (see train_net.py for example). |
|
Alternatively, you can call evaluation functions yourself (see Colab balloon tutorial for example). |
|
""" |
|
) |
|
|
|
@classmethod |
|
def test(cls, cfg, model, evaluators=None): |
|
""" |
|
Evaluate the given model. The given model is expected to already contain |
|
weights to evaluate. |
|
|
|
Args: |
|
cfg (CfgNode): |
|
model (nn.Module): |
|
evaluators (list[DatasetEvaluator] or None): if None, will call |
|
:meth:`build_evaluator`. Otherwise, must have the same length as |
|
``cfg.DATASETS.TEST``. |
|
|
|
Returns: |
|
dict: a dict of result metrics |
|
""" |
|
logger = logging.getLogger(__name__) |
|
if isinstance(evaluators, DatasetEvaluator): |
|
evaluators = [evaluators] |
|
if evaluators is not None: |
|
assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( |
|
len(cfg.DATASETS.TEST), len(evaluators) |
|
) |
|
|
|
results = OrderedDict() |
|
for idx, dataset_name in enumerate(cfg.DATASETS.TEST): |
|
data_loader = cls.build_test_loader(cfg, dataset_name) |
|
|
|
|
|
if evaluators is not None: |
|
evaluator = evaluators[idx] |
|
else: |
|
try: |
|
evaluator = cls.build_evaluator(cfg, dataset_name) |
|
except NotImplementedError: |
|
logger.warn( |
|
"No evaluator found. Use `DefaultTrainer.test(evaluators=)`, " |
|
"or implement its `build_evaluator` method." |
|
) |
|
results[dataset_name] = {} |
|
continue |
|
results_i = inference_on_dataset(model, data_loader, evaluator) |
|
results[dataset_name] = results_i |
|
if comm.is_main_process(): |
|
assert isinstance( |
|
results_i, dict |
|
), "Evaluator must return a dict on the main process. Got {} instead.".format( |
|
results_i |
|
) |
|
logger.info("Evaluation results for {} in csv format:".format(dataset_name)) |
|
print_csv_format(results_i) |
|
|
|
if len(results) == 1: |
|
results = list(results.values())[0] |
|
return results |
|
|
|
@staticmethod |
|
def auto_scale_workers(cfg, num_workers: int): |
|
""" |
|
When the config is defined for certain number of workers (according to |
|
``cfg.SOLVER.REFERENCE_WORLD_SIZE``) that's different from the number of |
|
workers currently in use, returns a new cfg where the total batch size |
|
is scaled so that the per-GPU batch size stays the same as the |
|
original ``IMS_PER_BATCH // REFERENCE_WORLD_SIZE``. |
|
|
|
Other config options are also scaled accordingly: |
|
* training steps and warmup steps are scaled inverse proportionally. |
|
* learning rate are scaled proportionally, following :paper:`ImageNet in 1h`. |
|
|
|
For example, with the original config like the following: |
|
|
|
.. code-block:: yaml |
|
|
|
IMS_PER_BATCH: 16 |
|
BASE_LR: 0.1 |
|
REFERENCE_WORLD_SIZE: 8 |
|
MAX_ITER: 5000 |
|
STEPS: (4000,) |
|
CHECKPOINT_PERIOD: 1000 |
|
|
|
When this config is used on 16 GPUs instead of the reference number 8, |
|
calling this method will return a new config with: |
|
|
|
.. code-block:: yaml |
|
|
|
IMS_PER_BATCH: 32 |
|
BASE_LR: 0.2 |
|
REFERENCE_WORLD_SIZE: 16 |
|
MAX_ITER: 2500 |
|
STEPS: (2000,) |
|
CHECKPOINT_PERIOD: 500 |
|
|
|
Note that both the original config and this new config can be trained on 16 GPUs. |
|
It's up to user whether to enable this feature (by setting ``REFERENCE_WORLD_SIZE``). |
|
|
|
Returns: |
|
CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``. |
|
""" |
|
old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE |
|
if old_world_size == 0 or old_world_size == num_workers: |
|
return cfg |
|
cfg = cfg.clone() |
|
frozen = cfg.is_frozen() |
|
cfg.defrost() |
|
|
|
assert ( |
|
cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0 |
|
), "Invalid REFERENCE_WORLD_SIZE in config!" |
|
scale = num_workers / old_world_size |
|
bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale)) |
|
lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale |
|
max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale)) |
|
warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale)) |
|
cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS) |
|
cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale)) |
|
cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale)) |
|
cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers |
|
logger = logging.getLogger(__name__) |
|
logger.info( |
|
f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, " |
|
f"max_iter={max_iter}, warmup={warmup_iter}." |
|
) |
|
|
|
if frozen: |
|
cfg.freeze() |
|
return cfg |
|
|
|
|
|
|
|
for _attr in ["model", "data_loader", "optimizer"]: |
|
setattr( |
|
DefaultTrainer, |
|
_attr, |
|
property( |
|
|
|
lambda self, x=_attr: getattr(self._trainer, x), |
|
|
|
lambda self, value, x=_attr: setattr(self._trainer, x, value), |
|
), |
|
) |
|
|