|
|
|
#include "cocoeval.h" |
|
#include <time.h> |
|
#include <algorithm> |
|
#include <cstdint> |
|
#include <numeric> |
|
|
|
using namespace pybind11::literals; |
|
|
|
namespace detectron2 { |
|
|
|
namespace COCOeval { |
|
|
|
|
|
|
|
|
|
|
|
void SortInstancesByDetectionScore( |
|
const std::vector<InstanceAnnotation>& detection_instances, |
|
std::vector<uint64_t>* detection_sorted_indices) { |
|
detection_sorted_indices->resize(detection_instances.size()); |
|
std::iota( |
|
detection_sorted_indices->begin(), detection_sorted_indices->end(), 0); |
|
std::stable_sort( |
|
detection_sorted_indices->begin(), |
|
detection_sorted_indices->end(), |
|
[&detection_instances](size_t j1, size_t j2) { |
|
return detection_instances[j1].score > detection_instances[j2].score; |
|
}); |
|
} |
|
|
|
|
|
|
|
void SortInstancesByIgnore( |
|
const std::array<double, 2>& area_range, |
|
const std::vector<InstanceAnnotation>& ground_truth_instances, |
|
std::vector<uint64_t>* ground_truth_sorted_indices, |
|
std::vector<bool>* ignores) { |
|
ignores->clear(); |
|
ignores->reserve(ground_truth_instances.size()); |
|
for (auto o : ground_truth_instances) { |
|
ignores->push_back( |
|
o.ignore || o.area < area_range[0] || o.area > area_range[1]); |
|
} |
|
|
|
ground_truth_sorted_indices->resize(ground_truth_instances.size()); |
|
std::iota( |
|
ground_truth_sorted_indices->begin(), |
|
ground_truth_sorted_indices->end(), |
|
0); |
|
std::stable_sort( |
|
ground_truth_sorted_indices->begin(), |
|
ground_truth_sorted_indices->end(), |
|
[&ignores](size_t j1, size_t j2) { |
|
return (int)(*ignores)[j1] < (int)(*ignores)[j2]; |
|
}); |
|
} |
|
|
|
|
|
|
|
void MatchDetectionsToGroundTruth( |
|
const std::vector<InstanceAnnotation>& detection_instances, |
|
const std::vector<uint64_t>& detection_sorted_indices, |
|
const std::vector<InstanceAnnotation>& ground_truth_instances, |
|
const std::vector<uint64_t>& ground_truth_sorted_indices, |
|
const std::vector<bool>& ignores, |
|
const std::vector<std::vector<double>>& ious, |
|
const std::vector<double>& iou_thresholds, |
|
const std::array<double, 2>& area_range, |
|
ImageEvaluation* results) { |
|
|
|
const int num_iou_thresholds = iou_thresholds.size(); |
|
const int num_ground_truth = ground_truth_sorted_indices.size(); |
|
const int num_detections = detection_sorted_indices.size(); |
|
std::vector<uint64_t> ground_truth_matches( |
|
num_iou_thresholds * num_ground_truth, 0); |
|
std::vector<uint64_t>& detection_matches = results->detection_matches; |
|
std::vector<bool>& detection_ignores = results->detection_ignores; |
|
std::vector<bool>& ground_truth_ignores = results->ground_truth_ignores; |
|
detection_matches.resize(num_iou_thresholds * num_detections, 0); |
|
detection_ignores.resize(num_iou_thresholds * num_detections, false); |
|
ground_truth_ignores.resize(num_ground_truth); |
|
for (auto g = 0; g < num_ground_truth; ++g) { |
|
ground_truth_ignores[g] = ignores[ground_truth_sorted_indices[g]]; |
|
} |
|
|
|
for (auto t = 0; t < num_iou_thresholds; ++t) { |
|
for (auto d = 0; d < num_detections; ++d) { |
|
|
|
double best_iou = std::min(iou_thresholds[t], 1 - 1e-10); |
|
int match = -1; |
|
for (auto g = 0; g < num_ground_truth; ++g) { |
|
|
|
|
|
if (ground_truth_matches[t * num_ground_truth + g] > 0 && |
|
!ground_truth_instances[ground_truth_sorted_indices[g]].is_crowd) { |
|
continue; |
|
} |
|
|
|
|
|
|
|
|
|
if (match >= 0 && !ground_truth_ignores[match] && |
|
ground_truth_ignores[g]) { |
|
break; |
|
} |
|
|
|
|
|
if (ious[d][ground_truth_sorted_indices[g]] >= best_iou) { |
|
best_iou = ious[d][ground_truth_sorted_indices[g]]; |
|
match = g; |
|
} |
|
} |
|
|
|
|
|
if (match >= 0) { |
|
detection_ignores[t * num_detections + d] = ground_truth_ignores[match]; |
|
detection_matches[t * num_detections + d] = |
|
ground_truth_instances[ground_truth_sorted_indices[match]].id; |
|
ground_truth_matches[t * num_ground_truth + match] = |
|
detection_instances[detection_sorted_indices[d]].id; |
|
} |
|
|
|
|
|
const InstanceAnnotation& detection = |
|
detection_instances[detection_sorted_indices[d]]; |
|
detection_ignores[t * num_detections + d] = |
|
detection_ignores[t * num_detections + d] || |
|
(detection_matches[t * num_detections + d] == 0 && |
|
(detection.area < area_range[0] || detection.area > area_range[1])); |
|
} |
|
} |
|
|
|
|
|
results->detection_scores.resize(detection_sorted_indices.size()); |
|
for (size_t d = 0; d < detection_sorted_indices.size(); ++d) { |
|
results->detection_scores[d] = |
|
detection_instances[detection_sorted_indices[d]].score; |
|
} |
|
} |
|
|
|
std::vector<ImageEvaluation> EvaluateImages( |
|
const std::vector<std::array<double, 2>>& area_ranges, |
|
int max_detections, |
|
const std::vector<double>& iou_thresholds, |
|
const ImageCategoryInstances<std::vector<double>>& image_category_ious, |
|
const ImageCategoryInstances<InstanceAnnotation>& |
|
image_category_ground_truth_instances, |
|
const ImageCategoryInstances<InstanceAnnotation>& |
|
image_category_detection_instances) { |
|
const int num_area_ranges = area_ranges.size(); |
|
const int num_images = image_category_ground_truth_instances.size(); |
|
const int num_categories = |
|
image_category_ious.size() > 0 ? image_category_ious[0].size() : 0; |
|
std::vector<uint64_t> detection_sorted_indices; |
|
std::vector<uint64_t> ground_truth_sorted_indices; |
|
std::vector<bool> ignores; |
|
std::vector<ImageEvaluation> results_all( |
|
num_images * num_area_ranges * num_categories); |
|
|
|
|
|
|
|
for (auto i = 0; i < num_images; ++i) { |
|
for (auto c = 0; c < num_categories; ++c) { |
|
const std::vector<InstanceAnnotation>& ground_truth_instances = |
|
image_category_ground_truth_instances[i][c]; |
|
const std::vector<InstanceAnnotation>& detection_instances = |
|
image_category_detection_instances[i][c]; |
|
|
|
SortInstancesByDetectionScore( |
|
detection_instances, &detection_sorted_indices); |
|
if ((int)detection_sorted_indices.size() > max_detections) { |
|
detection_sorted_indices.resize(max_detections); |
|
} |
|
|
|
for (size_t a = 0; a < area_ranges.size(); ++a) { |
|
SortInstancesByIgnore( |
|
area_ranges[a], |
|
ground_truth_instances, |
|
&ground_truth_sorted_indices, |
|
&ignores); |
|
|
|
MatchDetectionsToGroundTruth( |
|
detection_instances, |
|
detection_sorted_indices, |
|
ground_truth_instances, |
|
ground_truth_sorted_indices, |
|
ignores, |
|
image_category_ious[i][c], |
|
iou_thresholds, |
|
area_ranges[a], |
|
&results_all |
|
[c * num_area_ranges * num_images + a * num_images + i]); |
|
} |
|
} |
|
} |
|
|
|
return results_all; |
|
} |
|
|
|
|
|
template <typename T> |
|
std::vector<T> list_to_vec(const py::list& l) { |
|
std::vector<T> v(py::len(l)); |
|
for (int i = 0; i < (int)py::len(l); ++i) { |
|
v[i] = l[i].cast<T>(); |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int BuildSortedDetectionList( |
|
const std::vector<ImageEvaluation>& evaluations, |
|
const int64_t evaluation_index, |
|
const int64_t num_images, |
|
const int max_detections, |
|
std::vector<uint64_t>* evaluation_indices, |
|
std::vector<double>* detection_scores, |
|
std::vector<uint64_t>* detection_sorted_indices, |
|
std::vector<uint64_t>* image_detection_indices) { |
|
assert(evaluations.size() >= evaluation_index + num_images); |
|
|
|
|
|
|
|
image_detection_indices->clear(); |
|
evaluation_indices->clear(); |
|
detection_scores->clear(); |
|
image_detection_indices->reserve(num_images * max_detections); |
|
evaluation_indices->reserve(num_images * max_detections); |
|
detection_scores->reserve(num_images * max_detections); |
|
int num_valid_ground_truth = 0; |
|
for (auto i = 0; i < num_images; ++i) { |
|
const ImageEvaluation& evaluation = evaluations[evaluation_index + i]; |
|
|
|
for (int d = 0; |
|
d < (int)evaluation.detection_scores.size() && d < max_detections; |
|
++d) { |
|
evaluation_indices->push_back(evaluation_index + i); |
|
image_detection_indices->push_back(d); |
|
detection_scores->push_back(evaluation.detection_scores[d]); |
|
} |
|
for (auto ground_truth_ignore : evaluation.ground_truth_ignores) { |
|
if (!ground_truth_ignore) { |
|
++num_valid_ground_truth; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
detection_sorted_indices->resize(detection_scores->size()); |
|
std::iota( |
|
detection_sorted_indices->begin(), detection_sorted_indices->end(), 0); |
|
std::stable_sort( |
|
detection_sorted_indices->begin(), |
|
detection_sorted_indices->end(), |
|
[&detection_scores](size_t j1, size_t j2) { |
|
return (*detection_scores)[j1] > (*detection_scores)[j2]; |
|
}); |
|
|
|
return num_valid_ground_truth; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void ComputePrecisionRecallCurve( |
|
const int64_t precisions_out_index, |
|
const int64_t precisions_out_stride, |
|
const int64_t recalls_out_index, |
|
const std::vector<double>& recall_thresholds, |
|
const int iou_threshold_index, |
|
const int num_iou_thresholds, |
|
const int num_valid_ground_truth, |
|
const std::vector<ImageEvaluation>& evaluations, |
|
const std::vector<uint64_t>& evaluation_indices, |
|
const std::vector<double>& detection_scores, |
|
const std::vector<uint64_t>& detection_sorted_indices, |
|
const std::vector<uint64_t>& image_detection_indices, |
|
std::vector<double>* precisions, |
|
std::vector<double>* recalls, |
|
std::vector<double>* precisions_out, |
|
std::vector<double>* scores_out, |
|
std::vector<double>* recalls_out) { |
|
assert(recalls_out->size() > recalls_out_index); |
|
|
|
|
|
int64_t true_positives_sum = 0, false_positives_sum = 0; |
|
precisions->clear(); |
|
recalls->clear(); |
|
precisions->reserve(detection_sorted_indices.size()); |
|
recalls->reserve(detection_sorted_indices.size()); |
|
assert(!evaluations.empty() || detection_sorted_indices.empty()); |
|
for (auto detection_sorted_index : detection_sorted_indices) { |
|
const ImageEvaluation& evaluation = |
|
evaluations[evaluation_indices[detection_sorted_index]]; |
|
const auto num_detections = |
|
evaluation.detection_matches.size() / num_iou_thresholds; |
|
const auto detection_index = iou_threshold_index * num_detections + |
|
image_detection_indices[detection_sorted_index]; |
|
assert(evaluation.detection_matches.size() > detection_index); |
|
assert(evaluation.detection_ignores.size() > detection_index); |
|
const int64_t detection_match = |
|
evaluation.detection_matches[detection_index]; |
|
const bool detection_ignores = |
|
evaluation.detection_ignores[detection_index]; |
|
const auto true_positive = detection_match > 0 && !detection_ignores; |
|
const auto false_positive = detection_match == 0 && !detection_ignores; |
|
if (true_positive) { |
|
++true_positives_sum; |
|
} |
|
if (false_positive) { |
|
++false_positives_sum; |
|
} |
|
|
|
const double recall = |
|
static_cast<double>(true_positives_sum) / num_valid_ground_truth; |
|
recalls->push_back(recall); |
|
const int64_t num_valid_detections = |
|
true_positives_sum + false_positives_sum; |
|
const double precision = num_valid_detections > 0 |
|
? static_cast<double>(true_positives_sum) / num_valid_detections |
|
: 0.0; |
|
precisions->push_back(precision); |
|
} |
|
|
|
(*recalls_out)[recalls_out_index] = !recalls->empty() ? recalls->back() : 0; |
|
|
|
for (int64_t i = static_cast<int64_t>(precisions->size()) - 1; i > 0; --i) { |
|
if ((*precisions)[i] > (*precisions)[i - 1]) { |
|
(*precisions)[i - 1] = (*precisions)[i]; |
|
} |
|
} |
|
|
|
|
|
for (size_t r = 0; r < recall_thresholds.size(); ++r) { |
|
|
|
std::vector<double>::iterator low = std::lower_bound( |
|
recalls->begin(), recalls->end(), recall_thresholds[r]); |
|
size_t precisions_index = low - recalls->begin(); |
|
|
|
const auto results_ind = precisions_out_index + r * precisions_out_stride; |
|
assert(results_ind < precisions_out->size()); |
|
assert(results_ind < scores_out->size()); |
|
if (precisions_index < precisions->size()) { |
|
(*precisions_out)[results_ind] = (*precisions)[precisions_index]; |
|
(*scores_out)[results_ind] = |
|
detection_scores[detection_sorted_indices[precisions_index]]; |
|
} else { |
|
(*precisions_out)[results_ind] = 0; |
|
(*scores_out)[results_ind] = 0; |
|
} |
|
} |
|
} |
|
py::dict Accumulate( |
|
const py::object& params, |
|
const std::vector<ImageEvaluation>& evaluations) { |
|
const std::vector<double> recall_thresholds = |
|
list_to_vec<double>(params.attr("recThrs")); |
|
const std::vector<int> max_detections = |
|
list_to_vec<int>(params.attr("maxDets")); |
|
const int num_iou_thresholds = py::len(params.attr("iouThrs")); |
|
const int num_recall_thresholds = py::len(params.attr("recThrs")); |
|
const int num_categories = params.attr("useCats").cast<int>() == 1 |
|
? py::len(params.attr("catIds")) |
|
: 1; |
|
const int num_area_ranges = py::len(params.attr("areaRng")); |
|
const int num_max_detections = py::len(params.attr("maxDets")); |
|
const int num_images = py::len(params.attr("imgIds")); |
|
|
|
std::vector<double> precisions_out( |
|
num_iou_thresholds * num_recall_thresholds * num_categories * |
|
num_area_ranges * num_max_detections, |
|
-1); |
|
std::vector<double> recalls_out( |
|
num_iou_thresholds * num_categories * num_area_ranges * |
|
num_max_detections, |
|
-1); |
|
std::vector<double> scores_out( |
|
num_iou_thresholds * num_recall_thresholds * num_categories * |
|
num_area_ranges * num_max_detections, |
|
-1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<uint64_t> evaluation_indices; |
|
std::vector<double> detection_scores; |
|
std::vector<uint64_t> detection_sorted_indices; |
|
|
|
std::vector<uint64_t> |
|
image_detection_indices; |
|
|
|
std::vector<double> precisions, recalls; |
|
|
|
for (auto c = 0; c < num_categories; ++c) { |
|
for (auto a = 0; a < num_area_ranges; ++a) { |
|
for (auto m = 0; m < num_max_detections; ++m) { |
|
|
|
|
|
|
|
|
|
const int64_t evaluations_index = |
|
c * num_area_ranges * num_images + a * num_images; |
|
int num_valid_ground_truth = BuildSortedDetectionList( |
|
evaluations, |
|
evaluations_index, |
|
num_images, |
|
max_detections[m], |
|
&evaluation_indices, |
|
&detection_scores, |
|
&detection_sorted_indices, |
|
&image_detection_indices); |
|
|
|
if (num_valid_ground_truth == 0) { |
|
continue; |
|
} |
|
|
|
for (auto t = 0; t < num_iou_thresholds; ++t) { |
|
|
|
|
|
|
|
const int64_t recalls_out_index = |
|
t * num_categories * num_area_ranges * num_max_detections + |
|
c * num_area_ranges * num_max_detections + |
|
a * num_max_detections + m; |
|
|
|
|
|
|
|
|
|
const int64_t precisions_out_stride = |
|
num_categories * num_area_ranges * num_max_detections; |
|
const int64_t precisions_out_index = t * num_recall_thresholds * |
|
num_categories * num_area_ranges * num_max_detections + |
|
c * num_area_ranges * num_max_detections + |
|
a * num_max_detections + m; |
|
|
|
ComputePrecisionRecallCurve( |
|
precisions_out_index, |
|
precisions_out_stride, |
|
recalls_out_index, |
|
recall_thresholds, |
|
t, |
|
num_iou_thresholds, |
|
num_valid_ground_truth, |
|
evaluations, |
|
evaluation_indices, |
|
detection_scores, |
|
detection_sorted_indices, |
|
image_detection_indices, |
|
&precisions, |
|
&recalls, |
|
&precisions_out, |
|
&scores_out, |
|
&recalls_out); |
|
} |
|
} |
|
} |
|
} |
|
|
|
time_t rawtime; |
|
struct tm local_time; |
|
std::array<char, 200> buffer; |
|
time(&rawtime); |
|
#ifdef _WIN32 |
|
localtime_s(&local_time, &rawtime); |
|
#else |
|
localtime_r(&rawtime, &local_time); |
|
#endif |
|
strftime( |
|
buffer.data(), 200, "%Y-%m-%d %H:%num_max_detections:%S", &local_time); |
|
return py::dict( |
|
"params"_a = params, |
|
"counts"_a = std::vector<int64_t>( |
|
{num_iou_thresholds, |
|
num_recall_thresholds, |
|
num_categories, |
|
num_area_ranges, |
|
num_max_detections}), |
|
"date"_a = buffer, |
|
"precision"_a = precisions_out, |
|
"recall"_a = recalls_out, |
|
"scores"_a = scores_out); |
|
} |
|
|
|
} |
|
|
|
} |
|
|