// Copyright (c) Facebook, Inc. and its affiliates. | |
namespace py = pybind11; | |
namespace detectron2 { | |
namespace COCOeval { | |
// Annotation data for a single object instance in an image | |
struct InstanceAnnotation { | |
InstanceAnnotation( | |
uint64_t id, | |
double score, | |
double area, | |
bool is_crowd, | |
bool ignore) | |
: id{id}, score{score}, area{area}, is_crowd{is_crowd}, ignore{ignore} {} | |
uint64_t id; | |
double score = 0.; | |
double area = 0.; | |
bool is_crowd = false; | |
bool ignore = false; | |
}; | |
// Stores intermediate results for evaluating detection results for a single | |
// image that has D detected instances and G ground truth instances. This stores | |
// matches between detected and ground truth instances | |
struct ImageEvaluation { | |
// For each of the D detected instances, the id of the matched ground truth | |
// instance, or 0 if unmatched | |
std::vector<uint64_t> detection_matches; | |
// The detection score of each of the D detected instances | |
std::vector<double> detection_scores; | |
// Marks whether or not each of G instances was ignored from evaluation (e.g., | |
// because it's outside area_range) | |
std::vector<bool> ground_truth_ignores; | |
// Marks whether or not each of D instances was ignored from evaluation (e.g., | |
// because it's outside aRng) | |
std::vector<bool> detection_ignores; | |
}; | |
template <class T> | |
using ImageCategoryInstances = std::vector<std::vector<std::vector<T>>>; | |
// C++ implementation of COCO API cocoeval.py::COCOeval.evaluateImg(). For each | |
// combination of image, category, area range settings, and IOU thresholds to | |
// evaluate, it matches detected instances to ground truth instances and stores | |
// the results into a vector of ImageEvaluation results, which will be | |
// interpreted by the COCOeval::Accumulate() function to produce precion-recall | |
// curves. The parameters of nested vectors have the following semantics: | |
// image_category_ious[i][c][d][g] is the intersection over union of the d'th | |
// detected instance and g'th ground truth instance of | |
// category category_ids[c] in image image_ids[i] | |
// image_category_ground_truth_instances[i][c] is a vector of ground truth | |
// instances in image image_ids[i] of category category_ids[c] | |
// image_category_detection_instances[i][c] is a vector of detected | |
// instances in image image_ids[i] of category category_ids[c] | |
std::vector<ImageEvaluation> EvaluateImages( | |
const std::vector<std::array<double, 2>>& area_ranges, // vector of 2-tuples | |
int max_detections, | |
const std::vector<double>& iou_thresholds, | |
const ImageCategoryInstances<std::vector<double>>& image_category_ious, | |
const ImageCategoryInstances<InstanceAnnotation>& | |
image_category_ground_truth_instances, | |
const ImageCategoryInstances<InstanceAnnotation>& | |
image_category_detection_instances); | |
// C++ implementation of COCOeval.accumulate(), which generates precision | |
// recall curves for each set of category, IOU threshold, detection area range, | |
// and max number of detections parameters. It is assumed that the parameter | |
// evaluations is the return value of the functon COCOeval::EvaluateImages(), | |
// which was called with the same parameter settings params | |
py::dict Accumulate( | |
const py::object& params, | |
const std::vector<ImageEvaluation>& evalutations); | |
} // namespace COCOeval | |
} // namespace detectron2 | |