|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
__all__ = [ |
|
"window_partition", |
|
"window_unpartition", |
|
"add_decomposed_rel_pos", |
|
"get_abs_pos", |
|
"PatchEmbed", |
|
] |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Partition into non-overlapping windows with padding if needed. |
|
Args: |
|
x (tensor): input tokens with [B, H, W, C]. |
|
window_size (int): window size. |
|
|
|
Returns: |
|
windows: windows after partition with [B * num_windows, window_size, window_size, C]. |
|
(Hp, Wp): padded height and width before partition |
|
""" |
|
B, H, W, C = x.shape |
|
|
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) |
|
Hp, Wp = H + pad_h, W + pad_w |
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows, (Hp, Wp) |
|
|
|
|
|
def window_unpartition(windows, window_size, pad_hw, hw): |
|
""" |
|
Window unpartition into original sequences and removing padding. |
|
Args: |
|
x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. |
|
window_size (int): window size. |
|
pad_hw (Tuple): padded height and width (Hp, Wp). |
|
hw (Tuple): original height and width (H, W) before padding. |
|
|
|
Returns: |
|
x: unpartitioned sequences with [B, H, W, C]. |
|
""" |
|
Hp, Wp = pad_hw |
|
H, W = hw |
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size) |
|
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) |
|
|
|
if Hp > H or Wp > W: |
|
x = x[:, :H, :W, :].contiguous() |
|
return x |
|
|
|
|
|
def get_rel_pos(q_size, k_size, rel_pos): |
|
""" |
|
Get relative positional embeddings according to the relative positions of |
|
query and key sizes. |
|
Args: |
|
q_size (int): size of query q. |
|
k_size (int): size of key k. |
|
rel_pos (Tensor): relative position embeddings (L, C). |
|
|
|
Returns: |
|
Extracted positional embeddings according to relative positions. |
|
""" |
|
max_rel_dist = int(2 * max(q_size, k_size) - 1) |
|
|
|
if rel_pos.shape[0] != max_rel_dist: |
|
|
|
rel_pos_resized = F.interpolate( |
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), |
|
size=max_rel_dist, |
|
mode="linear", |
|
) |
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) |
|
else: |
|
rel_pos_resized = rel_pos |
|
|
|
|
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) |
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) |
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) |
|
|
|
return rel_pos_resized[relative_coords.long()] |
|
|
|
|
|
def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size): |
|
""" |
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. |
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 |
|
Args: |
|
attn (Tensor): attention map. |
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). |
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. |
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. |
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). |
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). |
|
|
|
Returns: |
|
attn (Tensor): attention map with added relative positional embeddings. |
|
""" |
|
q_h, q_w = q_size |
|
k_h, k_w = k_size |
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h) |
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w) |
|
|
|
B, _, dim = q.shape |
|
r_q = q.reshape(B, q_h, q_w, dim) |
|
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) |
|
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) |
|
|
|
attn = ( |
|
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] |
|
).view(B, q_h * q_w, k_h * k_w) |
|
|
|
return attn |
|
|
|
|
|
def get_abs_pos(abs_pos, has_cls_token, hw): |
|
""" |
|
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token |
|
dimension for the original embeddings. |
|
Args: |
|
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C). |
|
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token. |
|
hw (Tuple): size of input image tokens. |
|
|
|
Returns: |
|
Absolute positional embeddings after processing with shape (1, H, W, C) |
|
""" |
|
h, w = hw |
|
if has_cls_token: |
|
abs_pos = abs_pos[:, 1:] |
|
xy_num = abs_pos.shape[1] |
|
size = int(math.sqrt(xy_num)) |
|
assert size * size == xy_num |
|
|
|
if size != h or size != w: |
|
new_abs_pos = F.interpolate( |
|
abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2), |
|
size=(h, w), |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
|
|
return new_abs_pos.permute(0, 2, 3, 1) |
|
else: |
|
return abs_pos.reshape(1, h, w, -1) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Image to Patch Embedding. |
|
""" |
|
|
|
def __init__( |
|
self, kernel_size=(16, 16), stride=(16, 16), padding=(0, 0), in_chans=3, embed_dim=768 |
|
): |
|
""" |
|
Args: |
|
kernel_size (Tuple): kernel size of the projection layer. |
|
stride (Tuple): stride of the projection layer. |
|
padding (Tuple): padding size of the projection layer. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): embed_dim (int): Patch embedding dimension. |
|
""" |
|
super().__init__() |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|