|
|
|
import numpy as np |
|
from typing import Any, List, Tuple, Union |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
class Keypoints: |
|
""" |
|
Stores keypoint **annotation** data. GT Instances have a `gt_keypoints` property |
|
containing the x,y location and visibility flag of each keypoint. This tensor has shape |
|
(N, K, 3) where N is the number of instances and K is the number of keypoints per instance. |
|
|
|
The visibility flag follows the COCO format and must be one of three integers: |
|
|
|
* v=0: not labeled (in which case x=y=0) |
|
* v=1: labeled but not visible |
|
* v=2: labeled and visible |
|
""" |
|
|
|
def __init__(self, keypoints: Union[torch.Tensor, np.ndarray, List[List[float]]]): |
|
""" |
|
Arguments: |
|
keypoints: A Tensor, numpy array, or list of the x, y, and visibility of each keypoint. |
|
The shape should be (N, K, 3) where N is the number of |
|
instances, and K is the number of keypoints per instance. |
|
""" |
|
device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device("cpu") |
|
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device) |
|
assert keypoints.dim() == 3 and keypoints.shape[2] == 3, keypoints.shape |
|
self.tensor = keypoints |
|
|
|
def __len__(self) -> int: |
|
return self.tensor.size(0) |
|
|
|
def to(self, *args: Any, **kwargs: Any) -> "Keypoints": |
|
return type(self)(self.tensor.to(*args, **kwargs)) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.tensor.device |
|
|
|
def to_heatmap(self, boxes: torch.Tensor, heatmap_size: int) -> torch.Tensor: |
|
""" |
|
Convert keypoint annotations to a heatmap of one-hot labels for training, |
|
as described in :paper:`Mask R-CNN`. |
|
|
|
Arguments: |
|
boxes: Nx4 tensor, the boxes to draw the keypoints to |
|
|
|
Returns: |
|
heatmaps: |
|
A tensor of shape (N, K), each element is integer spatial label |
|
in the range [0, heatmap_size**2 - 1] for each keypoint in the input. |
|
valid: |
|
A tensor of shape (N, K) containing whether each keypoint is in the roi or not. |
|
""" |
|
return _keypoints_to_heatmap(self.tensor, boxes, heatmap_size) |
|
|
|
def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Keypoints": |
|
""" |
|
Create a new `Keypoints` by indexing on this `Keypoints`. |
|
|
|
The following usage are allowed: |
|
|
|
1. `new_kpts = kpts[3]`: return a `Keypoints` which contains only one instance. |
|
2. `new_kpts = kpts[2:10]`: return a slice of key points. |
|
3. `new_kpts = kpts[vector]`, where vector is a torch.ByteTensor |
|
with `length = len(kpts)`. Nonzero elements in the vector will be selected. |
|
|
|
Note that the returned Keypoints might share storage with this Keypoints, |
|
subject to Pytorch's indexing semantics. |
|
""" |
|
if isinstance(item, int): |
|
return Keypoints([self.tensor[item]]) |
|
return Keypoints(self.tensor[item]) |
|
|
|
def __repr__(self) -> str: |
|
s = self.__class__.__name__ + "(" |
|
s += "num_instances={})".format(len(self.tensor)) |
|
return s |
|
|
|
@staticmethod |
|
def cat(keypoints_list: List["Keypoints"]) -> "Keypoints": |
|
""" |
|
Concatenates a list of Keypoints into a single Keypoints |
|
|
|
Arguments: |
|
keypoints_list (list[Keypoints]) |
|
|
|
Returns: |
|
Keypoints: the concatenated Keypoints |
|
""" |
|
assert isinstance(keypoints_list, (list, tuple)) |
|
assert len(keypoints_list) > 0 |
|
assert all(isinstance(keypoints, Keypoints) for keypoints in keypoints_list) |
|
|
|
cat_kpts = type(keypoints_list[0])( |
|
torch.cat([kpts.tensor for kpts in keypoints_list], dim=0) |
|
) |
|
return cat_kpts |
|
|
|
|
|
|
|
def _keypoints_to_heatmap( |
|
keypoints: torch.Tensor, rois: torch.Tensor, heatmap_size: int |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Encode keypoint locations into a target heatmap for use in SoftmaxWithLoss across space. |
|
|
|
Maps keypoints from the half-open interval [x1, x2) on continuous image coordinates to the |
|
closed interval [0, heatmap_size - 1] on discrete image coordinates. We use the |
|
continuous-discrete conversion from Heckbert 1990 ("What is the coordinate of a pixel?"): |
|
d = floor(c) and c = d + 0.5, where d is a discrete coordinate and c is a continuous coordinate. |
|
|
|
Arguments: |
|
keypoints: tensor of keypoint locations in of shape (N, K, 3). |
|
rois: Nx4 tensor of rois in xyxy format |
|
heatmap_size: integer side length of square heatmap. |
|
|
|
Returns: |
|
heatmaps: A tensor of shape (N, K) containing an integer spatial label |
|
in the range [0, heatmap_size**2 - 1] for each keypoint in the input. |
|
valid: A tensor of shape (N, K) containing whether each keypoint is in |
|
the roi or not. |
|
""" |
|
|
|
if rois.numel() == 0: |
|
return rois.new().long(), rois.new().long() |
|
offset_x = rois[:, 0] |
|
offset_y = rois[:, 1] |
|
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) |
|
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) |
|
|
|
offset_x = offset_x[:, None] |
|
offset_y = offset_y[:, None] |
|
scale_x = scale_x[:, None] |
|
scale_y = scale_y[:, None] |
|
|
|
x = keypoints[..., 0] |
|
y = keypoints[..., 1] |
|
|
|
x_boundary_inds = x == rois[:, 2][:, None] |
|
y_boundary_inds = y == rois[:, 3][:, None] |
|
|
|
x = (x - offset_x) * scale_x |
|
x = x.floor().long() |
|
y = (y - offset_y) * scale_y |
|
y = y.floor().long() |
|
|
|
x[x_boundary_inds] = heatmap_size - 1 |
|
y[y_boundary_inds] = heatmap_size - 1 |
|
|
|
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) |
|
vis = keypoints[..., 2] > 0 |
|
valid = (valid_loc & vis).long() |
|
|
|
lin_ind = y * heatmap_size + x |
|
heatmaps = lin_ind * valid |
|
|
|
return heatmaps, valid |
|
|
|
|
|
@torch.jit.script_if_tracing |
|
def heatmaps_to_keypoints(maps: torch.Tensor, rois: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Extract predicted keypoint locations from heatmaps. |
|
|
|
Args: |
|
maps (Tensor): (#ROIs, #keypoints, POOL_H, POOL_W). The predicted heatmap of logits for |
|
each ROI and each keypoint. |
|
rois (Tensor): (#ROIs, 4). The box of each ROI. |
|
|
|
Returns: |
|
Tensor of shape (#ROIs, #keypoints, 4) with the last dimension corresponding to |
|
(x, y, logit, score) for each keypoint. |
|
|
|
When converting discrete pixel indices in an NxN image to a continuous keypoint coordinate, |
|
we maintain consistency with :meth:`Keypoints.to_heatmap` by using the conversion from |
|
Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a continuous coordinate. |
|
""" |
|
|
|
offset_x = rois[:, 0] |
|
offset_y = rois[:, 1] |
|
|
|
widths = (rois[:, 2] - rois[:, 0]).clamp(min=1) |
|
heights = (rois[:, 3] - rois[:, 1]).clamp(min=1) |
|
widths_ceil = widths.ceil() |
|
heights_ceil = heights.ceil() |
|
|
|
num_rois, num_keypoints = maps.shape[:2] |
|
xy_preds = maps.new_zeros(rois.shape[0], num_keypoints, 4) |
|
|
|
width_corrections = widths / widths_ceil |
|
height_corrections = heights / heights_ceil |
|
|
|
keypoints_idx = torch.arange(num_keypoints, device=maps.device) |
|
|
|
for i in range(num_rois): |
|
outsize = (int(heights_ceil[i]), int(widths_ceil[i])) |
|
roi_map = F.interpolate(maps[[i]], size=outsize, mode="bicubic", align_corners=False) |
|
|
|
|
|
|
|
roi_map = roi_map.reshape(roi_map.shape[1:]) |
|
|
|
|
|
max_score, _ = roi_map.view(num_keypoints, -1).max(1) |
|
max_score = max_score.view(num_keypoints, 1, 1) |
|
tmp_full_resolution = (roi_map - max_score).exp_() |
|
tmp_pool_resolution = (maps[i] - max_score).exp_() |
|
|
|
|
|
roi_map_scores = tmp_full_resolution / tmp_pool_resolution.sum((1, 2), keepdim=True) |
|
|
|
w = roi_map.shape[2] |
|
pos = roi_map.view(num_keypoints, -1).argmax(1) |
|
|
|
x_int = pos % w |
|
y_int = (pos - x_int) // w |
|
|
|
assert ( |
|
roi_map_scores[keypoints_idx, y_int, x_int] |
|
== roi_map_scores.view(num_keypoints, -1).max(1)[0] |
|
).all() |
|
|
|
x = (x_int.float() + 0.5) * width_corrections[i] |
|
y = (y_int.float() + 0.5) * height_corrections[i] |
|
|
|
xy_preds[i, :, 0] = x + offset_x[i] |
|
xy_preds[i, :, 1] = y + offset_y[i] |
|
xy_preds[i, :, 2] = roi_map[keypoints_idx, y_int, x_int] |
|
xy_preds[i, :, 3] = roi_map_scores[keypoints_idx, y_int, x_int] |
|
|
|
return xy_preds |
|
|