File size: 5,498 Bytes
b6cfc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import glob
import json
import os
import re
from typing import List

import huggingface_hub
from huggingface_hub import HfApi
from tqdm import tqdm

from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
from src.display_models.utils import AutoEvalColumn, model_hyperlink

api = HfApi(token=os.environ.get("H4_TOKEN", None))


def get_model_infos_from_hub(leaderboard_data: List[dict]):
    for model_data in tqdm(leaderboard_data):
        model_name = model_data["model_name_for_query"]
        try:
            model_info = api.model_info(model_name)
        except huggingface_hub.utils._errors.RepositoryNotFoundError:
            print("Repo not found!", model_name)
            model_data[AutoEvalColumn.license.name] = None
            model_data[AutoEvalColumn.likes.name] = None
            model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
            continue

        model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
        model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
        model_data[AutoEvalColumn.params.name] = get_model_size(model_name, model_info)


def get_model_license(model_info):
    try:
        return model_info.cardData["license"]
    except Exception:
        return None


def get_model_likes(model_info):
    return model_info.likes


size_pattern = re.compile(r"(\d\.)?\d+(b|m)")


def get_model_size(model_name, model_info):
    # In billions
    try:
        return round(model_info.safetensors["total"] / 1e9, 3)
    except AttributeError:
        try:
            size_match = re.search(size_pattern, model_name.lower())
            size = size_match.group(0)
            return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
        except AttributeError:
            return None


def get_model_type(leaderboard_data: List[dict]):
    for model_data in leaderboard_data:
        request_files = os.path.join(
            "eval-queue",
            model_data["model_name_for_query"] + "_eval_request_*" + ".json",
        )
        request_files = glob.glob(request_files)

        # Select correct request file (precision)
        request_file = ""
        if len(request_files) == 1:
            request_file = request_files[0]
        elif len(request_files) > 1:
            request_files = sorted(request_files, reverse=True)
            for tmp_request_file in request_files:
                with open(tmp_request_file, "r") as f:
                    req_content = json.load(f)
                    if (
                        req_content["status"] == "FINISHED"
                        and req_content["precision"] == model_data["Precision"].split(".")[-1]
                    ):
                        request_file = tmp_request_file

        if request_file == "":
            model_data[AutoEvalColumn.model_type.name] = ""
            model_data[AutoEvalColumn.model_type_symbol.name] = ""
            continue

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            request["weight_type"] != "Original"
        except Exception:
            pass

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            model_type = model_type_from_str(request["model_type"])
            model_data[AutoEvalColumn.model_type.name] = model_type.value.name
            model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol  # + ("🔺" if is_delta else "")
        except KeyError:
            if model_data["model_name_for_query"] in MODEL_TYPE_METADATA:
                model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[
                    model_data["model_name_for_query"]
                ].value.name
                model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[
                    model_data["model_name_for_query"]
                ].value.symbol  # + ("🔺" if is_delta else "")
            else:
                model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
                model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol


def flag_models(leaderboard_data: List[dict]):
    for model_data in leaderboard_data:
        if model_data["model_name_for_query"] in FLAGGED_MODELS:
            issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1]
            issue_link = model_hyperlink(
                FLAGGED_MODELS[model_data["model_name_for_query"]],
                f"See discussion #{issue_num}",
            )
            model_data[
                AutoEvalColumn.model.name
            ] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"


def remove_forbidden_models(leaderboard_data: List[dict]):
    indices_to_remove = []
    for ix, model in enumerate(leaderboard_data):
        if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
            indices_to_remove.append(ix)

    for ix in reversed(indices_to_remove):
        leaderboard_data.pop(ix)
    return leaderboard_data


def apply_metadata(leaderboard_data: List[dict]):
    leaderboard_data = remove_forbidden_models(leaderboard_data)
    get_model_type(leaderboard_data)
    get_model_infos_from_hub(leaderboard_data)
    flag_models(leaderboard_data)