pngwn's picture
pngwn HF staff
Duplicate from HuggingFaceH4/open_llm_leaderboard
b6cfc50
raw
history blame
4.9 kB
import json
import os
from dataclasses import dataclass
from typing import Dict, List, Tuple
import dateutil
import numpy as np
from src.display_models.utils import AutoEvalColumn, make_clickable_model
METRICS = ["acc_norm", "acc_norm", "acc", "mc2"]
BENCHMARKS = ["arc:challenge", "hellaswag", "hendrycksTest", "truthfulqa:mc"]
BENCH_TO_NAME = {
"arc:challenge": AutoEvalColumn.arc.name,
"hellaswag": AutoEvalColumn.hellaswag.name,
"hendrycksTest": AutoEvalColumn.mmlu.name,
"truthfulqa:mc": AutoEvalColumn.truthfulqa.name,
}
@dataclass
class EvalResult:
eval_name: str
org: str
model: str
revision: str
results: dict
precision: str = ""
model_type: str = ""
weight_type: str = ""
def to_dict(self):
from src.load_from_hub import is_model_on_hub
if self.org is not None:
base_model = f"{self.org}/{self.model}"
else:
base_model = f"{self.model}"
data_dict = {}
data_dict["eval_name"] = self.eval_name # not a column, just a save name
data_dict["weight_type"] = self.weight_type # not a column, just a save name
data_dict[AutoEvalColumn.precision.name] = self.precision
data_dict[AutoEvalColumn.model_type.name] = self.model_type
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
data_dict[AutoEvalColumn.dummy.name] = base_model
data_dict[AutoEvalColumn.revision.name] = self.revision
data_dict[AutoEvalColumn.average.name] = sum([v for k, v in self.results.items()]) / 4.0
data_dict[AutoEvalColumn.still_on_hub.name] = (
is_model_on_hub(base_model, self.revision)[0] or base_model == "baseline"
)
for benchmark in BENCHMARKS:
if benchmark not in self.results.keys():
self.results[benchmark] = None
for k, v in BENCH_TO_NAME.items():
data_dict[v] = self.results[k]
return data_dict
def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
with open(json_filepath) as fp:
data = json.load(fp)
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
return None, [] # we skip models with the wrong version
try:
config = data["config"]
except KeyError:
config = data["config_general"]
model = config.get("model_name", None)
if model is None:
model = config.get("model_args", None)
model_sha = config.get("model_sha", "")
model_split = model.split("/", 1)
precision = config.get("model_dtype")
model = model_split[-1]
if len(model_split) == 1:
org = None
model = model_split[0]
result_key = f"{model}_{model_sha}_{precision}"
else:
org = model_split[0]
model = model_split[1]
result_key = f"{org}_{model}_{model_sha}_{precision}"
eval_results = []
for benchmark, metric in zip(BENCHMARKS, METRICS):
accs = np.array([v.get(metric, None) for k, v in data["results"].items() if benchmark in k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
eval_results.append(
EvalResult(
eval_name=result_key,
org=org,
model=model,
revision=model_sha,
results={benchmark: mean_acc},
precision=precision, # todo model_type=, weight_type=
)
)
return result_key, eval_results
def get_eval_results() -> List[EvalResult]:
json_filepaths = []
for root, dir, files in os.walk("eval-results"):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
# store results by precision maybe?
try:
files.sort(key=lambda x: dateutil.parser.parse(x.split("_", 1)[-1][:-5]))
except dateutil.parser._parser.ParserError:
files = [files[-1]]
# up_to_date = files[-1]
for file in files:
json_filepaths.append(os.path.join(root, file))
eval_results = {}
for json_filepath in json_filepaths:
result_key, results = parse_eval_result(json_filepath)
for eval_result in results:
if result_key in eval_results.keys():
eval_results[result_key].results.update(eval_result.results)
else:
eval_results[result_key] = eval_result
eval_results = [v for v in eval_results.values()]
return eval_results
def get_eval_results_dicts() -> List[Dict]:
eval_results = get_eval_results()
return [e.to_dict() for e in eval_results]