Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import StableDiffusionUpscalePipeline | |
from PIL import Image | |
from io import BytesIO | |
import torch | |
model_id = "stabilityai/stable-diffusion-x4-upscaler" | |
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
pipeline = pipeline.to("cuda") | |
# def predict(input_img): | |
# predictions = predictor(input_img) | |
# return input_img, {p["label"]: p["score"] for p in predictions} | |
def upscalex4(input_img): | |
low_res_img = resize_on_scale(input_img) | |
prompt = "highly detailed" | |
upscaled_img = pipeline(prompt=prompt, image=low_res_img).images[0] | |
print("Low resolution image size = ", low_res_img.size) | |
print("Upscaled image size = ", upscaled_img.size) | |
return upscaled_img | |
def resize_on_scale(input_img): | |
low_res_img = input_img.convert("RGB") | |
wsize = 300 | |
wpercent = (wsize / float(input_img.size[0])) | |
hsize = int((float(input_img.size[1]) * float(wpercent))) | |
low_res_img = low_res_img.resize((wsize, hsize)) | |
return low_res_img | |
gradio_app = gr.Interface( | |
upscalex4, | |
inputs=gr.Image(label="Select a blurry image", sources=['upload', 'webcam', 'clipboard'], type="pil"), | |
outputs=gr.Image(label="Processed Image"), | |
title="Image Upscaler", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |
# img = Image.open(requests.get("https://pbs.twimg.com/profile_images/1600764211378139137/HirERJI5_400x400.jpg", stream=True).raw) | |
# img = img.resize((64, 64)) | |
# print("Original image size = ", img.size) | |
# print("Upscaled image size = ", upscaled_img.size) | |
# upscaled_img.show() |