po5302006's picture
add upscaler with x4
201e368 verified
import gradio as gr
from diffusers import StableDiffusionUpscalePipeline
from PIL import Image
from io import BytesIO
import torch
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")
# def predict(input_img):
# predictions = predictor(input_img)
# return input_img, {p["label"]: p["score"] for p in predictions}
def upscalex4(input_img):
low_res_img = resize_on_scale(input_img)
prompt = "highly detailed"
upscaled_img = pipeline(prompt=prompt, image=low_res_img).images[0]
print("Low resolution image size = ", low_res_img.size)
print("Upscaled image size = ", upscaled_img.size)
return upscaled_img
def resize_on_scale(input_img):
low_res_img = input_img.convert("RGB")
wsize = 300
wpercent = (wsize / float(input_img.size[0]))
hsize = int((float(input_img.size[1]) * float(wpercent)))
low_res_img = low_res_img.resize((wsize, hsize))
return low_res_img
gradio_app = gr.Interface(
upscalex4,
inputs=gr.Image(label="Select a blurry image", sources=['upload', 'webcam', 'clipboard'], type="pil"),
outputs=gr.Image(label="Processed Image"),
title="Image Upscaler",
)
if __name__ == "__main__":
gradio_app.launch()
# img = Image.open(requests.get("https://pbs.twimg.com/profile_images/1600764211378139137/HirERJI5_400x400.jpg", stream=True).raw)
# img = img.resize((64, 64))
# print("Original image size = ", img.size)
# print("Upscaled image size = ", upscaled_img.size)
# upscaled_img.show()