Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import re | |
import snscrape.modules.twitter as sntwitter | |
from transformers import pipeline | |
import plotly.express as px | |
import joblib | |
from sklearn.metrics import classification_report,confusion_matrix | |
import nltk | |
nltk.download("punkt") | |
nltk.download('stopwords') | |
from nltk.tokenize import word_tokenize | |
def get_tweets(username, length=10, option = None): | |
# Creating list to append tweet data to | |
query = username + " -filter:links filter:replies lang:id" | |
if option == "Advanced": | |
query = username | |
tweets = [] | |
# Using TwitterSearchScraper to scrape | |
# Using TwitterSearchScraper to scrape | |
for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()): | |
if i>=length: | |
break | |
tweets.append([tweet.content]) | |
# Creating a dataframe from the tweets list above | |
tweets_df = pd.DataFrame(tweets, columns=["content"]) | |
tweets_df['content'] = tweets_df['content'].str.replace('@[^\s]+','') | |
tweets_df['content'] = tweets_df['content'].str.replace('#[^\s]+','') | |
tweets_df['content'] = tweets_df['content'].str.replace('http\S+','') | |
tweets_df['content'] = tweets_df['content'].str.replace('pic.twitter.com\S+','') | |
tweets_df['content'] = tweets_df['content'].str.replace('RT','') | |
tweets_df['content'] = tweets_df['content'].str.replace('amp','') | |
# remove emoticon | |
tweets_df['content'] = tweets_df['content'].str.replace('[^\w\s#@/:%.,_-]', '', flags=re.UNICODE) | |
# remove whitespace leading & trailing | |
tweets_df['content'] = tweets_df['content'].str.strip() | |
# remove multiple whitespace into single whitespace | |
tweets_df['content'] = tweets_df['content'].str.replace('\s+', ' ') | |
# remove row with empty content | |
tweets_df = tweets_df[tweets_df['content'] != ''] | |
return tweets_df | |
def get_sentiment(df,option_model): | |
id2label = {0: "negatif", 1: "netral", 2: "positif"} | |
if option_model == "IndoBERT (Accurate,Slow)": | |
classifier = pipeline("sentiment-analysis",model = "indobert") | |
df['sentiment'] = df['content'].apply(lambda x: id2label[classifier(x)[0]['label']]) | |
elif (option_model == "Logistic Regression (Less Accurate,Fast)"): | |
df_model = joblib.load('assets/df_model.pkl') | |
classifier = df_model[df_model.model_name == "Logistic Regression"].model.values[0] | |
df['sentiment'] = df['content'].apply(lambda x: id2label[classifier.predict([x])[0]]) | |
else : | |
df_model = joblib.load('assets/df_model.pkl') | |
classifier = df_model[df_model.model_name == option_model].model.values[0] | |
df['sentiment'] = df['content'].apply(lambda x: id2label[classifier.predict([x])[0]]) | |
# change order sentiment to first column | |
cols = df.columns.tolist() | |
cols = cols[-1:] + cols[:-1] | |
df = df[cols] | |
return df | |
def get_bar_chart(df): | |
df= df.groupby(['sentiment']).count().reset_index() | |
# plot barchart sentiment | |
# plot barchart sentiment | |
fig = px.bar(df, x="sentiment", y="content", color="sentiment",text = "content", color_discrete_map={"positif": "#00cc96", "negatif": "#ef553b","netral": "#636efa"}) | |
# hide legend | |
fig.update_layout(showlegend=False) | |
# set margin top | |
fig.update_layout(margin=dict(t=0, b=150, l=0, r=0)) | |
# set title in center | |
# set annotation in bar | |
fig.update_traces(textposition='outside') | |
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') | |
# set y axis title | |
fig.update_yaxes(title_text='Jumlah Komentar') | |
return fig | |
def plot_model_summary(df_model): | |
df_scatter = df_model[df_model.set_data == "test"][["score","time","model_name"]] | |
# plot scatter | |
fig = px.scatter(df_scatter, x="time", y="score", color="model_name", hover_data=['model_name']) | |
# set xlabel to time (s) | |
fig.update_xaxes(title_text="time (s)") | |
# set ylabel to accuracy | |
fig.update_yaxes(title_text="accuracy") | |
# set point size | |
fig.update_traces(marker=dict(size=10)) | |
fig.update_layout(autosize = False,margin=dict(t=0, l=0, r=0),height = 400) | |
return fig | |
def plot_clfr(df_model,option_model,df): | |
df_clfr = pd.DataFrame(classification_report(df["label"],df[f"{option_model}_pred"],output_dict=True)) | |
# heatmap using plotly | |
df_clfr.columns = ["positif","netral","negatif","accuracy","macro_avg","weighted_avg"] | |
fig = px.imshow(df_clfr.T.iloc[:,:-1], x=df_clfr.T.iloc[:,:-1].columns, y=df_clfr.T.iloc[:,:-1].index) | |
# remove colorbar | |
fig.update_layout(coloraxis_showscale=False) | |
fig.update_layout(coloraxis_colorscale='gnbu') | |
# get annot | |
annot = df_clfr.T.iloc[:,:-1].values | |
# add annot and set font size | |
fig.update_traces(text=annot, texttemplate='%{text:.2f}',textfont_size=12) | |
# set title to classification report | |
fig.update_layout(title_text="π Classification Report") | |
return fig | |
def plot_confusion_matrix(df_model,option_model,df): | |
# plot confusion matrix | |
cm = confusion_matrix(df['label'],df[f"{option_model}_pred"]) | |
fig = px.imshow(cm, x=['negatif','netral','positif'], y=['negatif','netral','positif']) | |
# remove colorbar | |
fig.update_layout(coloraxis_showscale=False) | |
fig.update_layout(coloraxis_colorscale='gnbu',title_text = "π Confusion Matrix") | |
# get annot | |
annot = cm | |
# add annot | |
fig.update_traces(text=annot, texttemplate='%{text:.0f}',textfont_size=15) | |
return fig |